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Instantaneous phase synchronization of two decoupled quantum limit-cycle oscillators induced
by conditional photon detection
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We show that conditional photon detection induces instantaneous phase synchronization between two decou-
pled quantum limit-cycle oscillators. We consider two quantum van der Pol oscillators without mutual coupling,
each with additional single-photon dissipation, and perform continuous measurement of photon counting on
the output fields of the two baths interacting through a beam splitter. It is observed that in-phase or antiphase
coherence of the two decoupled oscillators instantaneously increases after photon detection and then decreases
gradually in the weak quantum regime or quickly in the strong quantum regime until the next photon detection
occurs. In the strong quantum regime, quantum entanglement also increases after photon detection and quickly
disappears. We derive the analytical upper bounds for the increases in the quantum entanglement and phase
coherence by conditional photon detection in the quantum limit.
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I. INTRODUCTION

Synchronization phenomena, first reported by Huygens in
the 17th century, are widely observed in various areas of
science and engineering, including laser oscillations, mechan-
ical vibrations, oscillatory chemical reactions, and biological
rhythms [1–6]. While synchronization of coupled or peri-
odically driven nonlinear oscillators has been extensively
investigated [1–3,7], decoupled oscillators that do not involve
any interactions or periodic forcing can also exhibit syn-
chronous behaviors when driven by common random forcing,
such as the consistency or reproducibility of laser oscil-
lations and spiking neocortical neurons receiving identical
sequences of random signals [8,9]. Common-noise-induced
synchronization has been theoretically investigated for decou-
pled limit-cycle oscillators subjected, e.g., to common random
impulses [10–12] and Gaussian white noise [13–15].

Recent developments in nanotechnology have inspired the-
oretical investigations of quantum synchronization [16–41],
and the first experimental demonstration of quantum phase
synchronization in spin-1 atoms [42] and on the IBM Q
system [43] has been reported very recently. Many studies
have analyzed coupled quantum nonlinear dissipative oscil-
lators, for example, synchronization of quantum van der Pol
(vdP) oscillators [16–18], synchronization of ensembles of
atoms [19], synchronization of triplet spins [20], measures
for quantum synchronization of two oscillators [21–23], and
synchronization blockade [24,25]. The effects of quantum
measurement backaction on quantum nonlinear dissipative
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oscillators have also been investigated as a unique feature of
quantum systems, including improvement in the accuracy of
Ramsey spectroscopy through the measurement of synchro-
nized atoms [26], a measurement-induced transition between
in-phase and antiphase synchronized states [27], unraveling
of nonclassicality in optomechanical oscillators [44], charac-
terization of synchronization using quantum trajectories [28],
realization of quantum relaxation oscillators [29], and en-
hancement of synchronization by quantum measurement and
feedback control [30].

In this paper, inspired by the common-noise-induced
synchronization of decoupled classical oscillators, we con-
sider the phase synchronization of two decoupled quantum
oscillators induced by the common backaction of quan-
tum measurement. We consider two quantum van der Pol
oscillators without mutual coupling, each with additional
single-photon dissipation, and perform a continuous measure-
ment of photon counting on the output fields of the two baths
interacting through a beam splitter. It is demonstrated that the
quantum measurement backaction of conditional photon de-
tection common to both oscillators induces the instantaneous
phase synchronization of the oscillators.

II. MODEL

A schematic of the physical setup is depicted in Fig. 1.
The stochastic master equation (SME) of the system can be
expressed as

dρ = L0ρdt + G[L+]ρ(dN+ − γ3 Tr[L†
+L+ρ]dt )

+G[L−]ρ(dN− − γ3 Tr[L†
−L−ρ]dt ),

L0ρ =
∑
j=1,2

(−i[ωa†
j a j, ρ] + γ1D[a†

j ]ρ

+ γ2D
[
a2

j

]
ρ + γ3D[a j]ρ),
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FIG. 1. Instantaneous phase synchronization of two decoupled quantum vdP oscillators induced by conditional photon detection. Either
in-phase or antiphase coherence is induced after photon detection at detector P or M, respectively.

L± = 1√
2

(a1 ± a2), D[L]ρ = LρL† − 1

2
(ρL†L + L†Lρ),

G[L]ρ = LρL†

Tr[LρL†]
− ρ, (1)

where the natural frequency ω and the decay rates γ1, γ2, and
γ3 for negative damping, nonlinear damping, and linear damp-
ing, respectively, are assumed identical for both oscillators,
N± are two independent Poisson processes whose increments
are given by dN± = 1 with probability γ3 Tr[L†

±L±ρ]dt and
dN± = 0 with probability 1 − γ3 Tr[L†

±L±ρ]dt in each inter-
val dt , where dN+ = 1 and dN− = 1 represent the photon
detection at detectors P and M in Fig. 1, respectively, and the
reduced Planck constant is set to h̄ = 1.

In the derivation of the SME (1), the SLH frame-
work [45,46], a general formulation for quantum networked
systems, has been used to describe the cascade and con-
catenate connections of quantum system components. In this
framework, the quantum system is specified by parameters
(S, L, H ), i.e., a scattering matrix S, coupling vector L, and
Hamiltonian H , from which the SME (1) can be derived by
using the quantum filtering theory [47,48]. See the Appendix
for details of the SLH framework and the derivation of the
SME (1).

Note that if we average Eq. (1) over various stochas-
tic trajectories, we obtain two independent master equations
without measurement for completely decoupled oscillators
whose phase values are fully incoherent in the steady state.
Conditional photon detection at the detector P and M by the
operators L+ = (a1 + a2)/

√
2 and L− = (a1 − a2)/

√
2 after

the beam splitter can also be interpreted as an unraveling
of two competing dissipative coupling terms D[a1 + a2] and
D[a1 − a2] considered in Refs. [17,49], which induce syn-
chronization of the two oscillators.

III. WEAK QUANTUM REGIME

First, we numerically analyze the quantum SME (1) in the
weak quantum regime. To characterize the degree of phase

coherence between two quantum vdP oscillators, we use the
absolute value of the normalized correlator [27]

S12 = |S12|eiθ12 = Tr[a†
1a2ρ]√

Tr[a†
1a1ρ]Tr[a†

2a2ρ]
(2)

as the order parameter, which is a quantum analog of the order
parameter for two classical noisy oscillators [3]. The modulus
|S12| takes values in 0 � |S12| � 1; |S12| = 1 when the two os-
cillators are perfectly phase synchronized and |S12| = 0 when
they are perfectly phase incoherent. We also use the argu-
ment θ12 to characterize the averaged phase difference of the
two oscillators in order to distinguish in-phase and antiphase
coherence. We use the negativity N = (‖ρ�1‖1 − 1)/2 to
quantify the quantum entanglement of the two oscillators,
where ρ�1 represents the partial transpose of the system with
respect to the subsystem representing the first oscillator and
‖X‖1 = Tr |X | = Tr

√
X †X [50,51]. When N takes a nonzero

value, the two oscillators are entangled with one other. We
also observe the purity P = Tr[ρ2].

Figures 2(a)–2(d) plot the time evolution of |S12|, θ12, N ,
and P in the weak quantum regime, respectively, calculated
for a single trajectory of the quantum SME (1). As shown in
Fig. 2(a), |S12| instantaneously increases after detection of a
photon either at P or M, indicating that the phase coherence of
the two decoupled oscillators is induced by conditional photon
detection. After photon detection, |S12| gradually decreases
because the two oscillators converge to the desynchronized
steady state of the SME (1) in the absence of photon detection,
i.e., dN± = 0.

In this regime, the nonlinear damping is not strong and
the relaxation to the desynchronized state is relatively slow.
Therefore, subsequent photon detection typically occurs be-
fore the convergence to the desynchronized state and |S12|
remains always positive. Figure 2(b) shows that θ12 takes ei-
ther θ12 = 0 or θ12 = π . This indicates that the two oscillators
immediately attain in-phase coherence after photon detection
at P or antiphase coherence after photon detection at M. The
negativity and purity are shown in Figs. 3(c) and 3(d), respec-
tively, where the negativity is always zero and the purity takes
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FIG. 2. Results in the weak quantum regime. The parameters are (ω, γ2, γ3)/γ1 = (0.1, 0.25, 0.1) with γ1 = 1. (a)–(d) Time evolution
of (a) the absolute value of the normalized correlator |S12|, (b) the average phase value θ12, (c) negativity N , and (d) purity P. (e), (f) Q
distributions Q(θ ) immediately after the first photon detection at (e) P (t = 4.51) and (f) M (t = 0.95). Photon detection at detectors P and M
is indicated by the red- and blue-dashed lines in (a)–(d), respectively.

FIG. 3. Results in the strong quantum regime. The parameters are (ω, γ2, γ3)/γ1 = (0.5, 50, 0.5) with γ1 = 1. (a)–(d) Time evolution
of (a) the absolute value of the normalized correlator |S12|, (b) the averaged phase value θ12, (c) negativity N , and (d) purity P. (e), (f) Q
distributions Q(θ ) immediately after the first photon detection at (e) P (t = 16.8) and (f) M (t = 0.52). Photon detection at detectors P and M
is indicated by the red- and blue-dashed lines in (a)–(d), respectively.
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small values between 0.03 and 0.05, indicating that the system
is separable and mixed.

The phase coherence of the two oscillators can also be
captured by using the Hushimi Q distribution of the phase
difference θ = φ2 − φ1 [52] between the two oscillators,
Q(θ ), calculated by introducing the two-mode Q distribution
[53] Q(α1, α

∗
1 , α2, α

∗
2 ) = 1

π2 〈α1, α2|ρ|α1, α2〉 with Rjeiφ j =
α j ( j = 1, 2) and integrating over R1, R2, and φ1 + φ2.

Figures 2(e) and 2(f) show Q(θ ) of the system states im-
mediately after the first photon detection at detectors P and
M, respectively. The peak of Q(θ ) occurs at θ = 0 in Fig. 2(e)
and at θ = π in Fig. 2(f), clearly indicating that the in-phase
and antiphase coherences of the two oscillators are induced by
conditional photon detection.

IV. STRONG QUANTUM REGIME

We next analyze the quantum SME (1) in a stronger quan-
tum regime. Figures 3(a)–3(d) show the evolution of |S12|, θ12,
N , and P, respectively. As shown in Fig. 3(a), |S12| takes
large values close to 1 immediately after photon detection,
indicating that instantaneous phase coherence also arises in
this case. In this regime, the nonlinear damping is strong and
the system quickly converges to the desynchronized steady
state of the SME (1) when detection does not occur, i.e.,
dN± = 0. Therefore, phase coherence quickly disappears and
|S12| remains zero until the next photon detection occurs.

Similar to Fig. 2(b), Fig. 3(b) shows that θ12 takes either
θ12 = 0 or θ12 = π . Thus, the two oscillators become in-phase
coherent after photon detection at P and antiphase coherent
after photon detection at M. Remarkably, Figs. 3(c) and 3(d)
show that nonzero negativity and purity with values between
0.5 and 0.6 are attained instantaneously after photon detection,
indicating that mixed entangled states are obtained in this
case. However, the quantum entanglement quickly disappears
as shown in the inset in Fig. 3(c). Here, the apparent linear
decay of the negativity is due to the large decay rate and
the cutoff at zero of the negativity (see, e.g., Ref. [54] for
a discussion about the decay of the negativity). Figures 3(e)
and 3(f) show the Q distributions Q(θ ) of the system states
immediately after the first photon detection at detectors P and
M, respectively. The Q distributions are peaked at θ = 0 and
θ = π , clearly indicating that in-phase and antiphase coher-
ence of the two oscillators are induced also in this case.

V. QUANTUM LIMIT

From previous numerical results, it is expected that maxi-
mum quantum entanglement is attained in the quantum limit,
i.e., γ2 → ∞. In this limit, we can map the quantum vdP
oscillator to an analytically tractable two-level system with
basis states |0〉 and |1〉 [17], and transform the SME (1) to

dρ = Lq
0ρdt + G[Lq

+]ρ(dN+ − γ3 Tr[Lq†
+ Lq

+ρ]dt )

+G[Lq
−]ρ

(
dN− − γ3 Tr[Lq†

− Lq
−ρ]dt

)
,

Lq
0ρ =

∑
j=1,2

(−i[ωσ+
j σ−

j , ρ] + γ1D[σ+
j ]ρ

+(2γ1 + γ3)D[σ−
j ]ρ),

Lq
± = 1√

2
(σ−

1 ± σ−
2 ), (3)

with σ−
j = |0〉〈1| j and σ+

j = |1〉〈0| j representing the low-
ering and raising operators of the jth system ( j = 1, 2),

respectively, because the transition |1〉 2γ1−→ |2〉 2γ2−→ |0〉 can

be regarded as |1〉 2γ1−→ |0〉 when γ2 → ∞.
The steady state of Eq. (3) without detection, i.e., dN± =

0, can be analytically obtained, which is given by a diagonal
matrix ρpre = diag (ρpre

0 , ρ
pre
1 , ρ

pre
1 , ρ

pre
2 ) with

ρ
pre
0 = (k − 3)

√
k2 + 2k + 9 + k2 − 2k + 9

2k2
,

ρ
pre
1 = 3

√
k2 + 2k + 9 − k − 9

2k2
,

ρ
pre
2 = −(k + 3)

√
k2 + 2k + 9 + k2 + 4k + 9

2k2
. (4)

Note that only a single parameter k = γ3/γ1 specifies the ele-
ments of the matrix, where we assume k > 0, namely, photon
detection occurs with a nonzero probability.

The states ρ
pos
± = Lq

±ρpreLq†
± /Tr[Lq

±ρpreLq†
± ], immediately

after photon detection occurs at detectors P (ρpos
+ ) and M

(ρpos
− ), can be represented by a density matrix,

ρ
pos
± = ρ

pos
0 |00〉〈00| + ρ

pos
1

( |01〉 ± |10〉√
2

)( 〈01| ± 〈10|√
2

)
,

(5)

with

ρ
pos
0 = −3

√
k2 + 2k + 9 + k + 9

k(
√

k2 + 2k + 9 − k − 3)
,

ρ
pos
1 = (k + 3)

√
k2 + 2k + 9 − k2 − 4k − 9

k(
√

k2 + 2k + 9 − k − 3)
. (6)

Using this result, we can explicitly calculate the normalized
correlator S12 and the Q distribution of the phase difference
between the two oscillators. If subsequent photon detection
does not occur, the state after photon detection in Eq. (6) con-
verges to the steady state ρpre in Eq. (4) with the approximate
decay rate determined by γ1 and γ3 in Eq. (3). In this case,
the correlator S12 of the states ρ

pos
± immediately after photon

detection always takes S12 = ±1 irrespective of the value of k
(and then quickly decays).

The Q distribution for ρ
pos
± can also be calculated as (a

similar calculation for the Wigner distribution of the phase
difference has been performed in Ref. [17])

Q(θ )[ρpos
± ] = 1

2π
± ρ

pos
1 cos θ

8
. (7)

These results qualitatively agree with the corresponding re-
sults in the strong quantum regime in Fig. 3. It is notable that
the dependence of the phase coherence on k can be captured
by the peak height of Q(θ ) but not by the normalized correla-
tor S12 in the quantum limit. Indeed, the element ρ

pos
0 |00〉〈00|

in Eq. (5) affects Q(θ ) (through ρ
pos
1 = 1 − ρ

pos
0 ) in Eq. (7),

whereas it does not affect the value of S12.
The above result indicates that the degree of phase coher-

ence is better quantified by the peak height of Q(θ ) rather than
S12 in strong quantum regimes. This is because S12 is defined
as a quantum analog of the order parameter for the coherence
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FIG. 4. Dependence of the results on the parameter k = γ3/γ1 of the two-level system in the quantum limit γ2 → ∞. (a) Elements of ρpre.
(b) Elements of ρpos. (c) Q(θ )[ρpos

+ ] distributions of the phase difference of two oscillators for k → 0 (red line), k = 0.5, 2, 5, 10 (gray lines
from the red line to the blue line), and k = 50 (blue line) are shown. (d) Concurrence. (e) Negativity. (f) Purity.

of classical noisy oscillators, which is quantitatively correct
only in the semiclassical regime. This observation is also
important in interpreting the results in the weak and strong
quantum regimes shown in Figs. 2 and 3, where Q(θ ) in the
weak quantum regime (Fig. 2) are more sharply peaked than
those in the strong quantum regime (Fig. 3), while |S12| in
Fig. 2 takes smaller values than that in Fig. 3. Thus, S12 may
not work well for comparing the phase coherence between
different quantum regimes.

In the quantum limit, the symmetric superpositions |S〉 =
(|01〉 + |10〉)/

√
2 and |A〉 = (|01〉 − |10〉)/

√
2 can be re-

garded as in-phase and antiphase synchronized states, because
the corresponding distributions Q(θ )[|S〉〈S|] = 1

2π
+ cos θ

8 and
Q(θ )[|A〉〈A|] = 1

2π
− cos θ

8 are peaked at θ = 0 and θ = π ,
respectively. As |A〉 and |S〉 are dark states with respect to
Lq

+ and Lq
−, i.e., Lq

+|A〉 = 0 and Lq
−|S〉 = 0, photon detection

at detector P annihilates the antiphase-synchronized state |A〉
and creates an in-phase-synchronized state |S〉 with S12 = 1
(θ12 = 0), while photon detection at detector M annihilates |S〉
and creates |A〉 with S12 = −1 (θ12 = π ).

Figures 4(a)–4(c) show the dependence of the elements
ρpre and ρpos and Q(θ )[ρpos

+ ] on k, respectively [we only plot
Q(θ )[ρpos

+ ] because Q(θ )[ρpos
− ] = Q(θ + π )[ρpos

+ ]]. As shown
in Fig. 4(a), ρ

pre
1 and ρ

pre
2 take larger values when k is smaller.

When k → 0, ρ
pre
1 and ρ

pre
2 approach the supremum val-

ues, ρ
pre
1 → 2

9 and ρ
pre
2 → 1

9 (ρpre
0 → 4

9 ), corresponding to
the completely incoherent steady state of the two decoupled
quantum vdP oscillators in the quantum limit, i.e., ρpre →
( 2

3 |0〉〈0| + 1
3 |1〉〈1|) ⊗ ( 2

3 |0〉〈0| + 1
3 |1〉〈1|), where Q(θ ) is uni-

form [16,17]. Therefore, ρpos
1 approaches the supremum value,

ρ
pos
1 → 1

3 (ρpos
0 → 2

3 ), as shown in Fig. 4(b), and Q(θ )[ρpos
+ ]

exhibits the maximum peak as shown in Fig. 4(c), indi-
cating that maximum phase coherence is obtained. In the
opposite limit, k → ∞, ρpre converges to the two-mode vac-
uum state ρpre → |00〉〈00|, i.e., ρ

pre
1 , ρ

pre
2 → 0 (ρpre

0 → 1),
resulting in ρ

pos
1 → 0 (ρpos

0 → 1) and the uniform distribution
Q(θ )[ρpos

+ ] → π
2 . Note that we can only consider the limit

k → 0 (no photon detection occurs when k = 0), and that the
two-mode vacuum state in the k → ∞ limit is not a limit
cycle.

In addition to the negativity N and purity P, the quan-
tum entanglement of the density matrix ρpos in Eq. (5)
can also be quantified using the concurrence [55] C =
max (0, λ1 − λ2 − λ3 − λ4), where λ1, λ2, λ3, and λ4 are
the square roots of the eigenvalues of ρρ̃ with ρ̃ =
(σy ⊗ σy)ρ∗(σy ⊗ σy) in decreasing order. The concurrence C
takes a nonzero value when the two oscillators are entangled
with each other (C ∈ [0, 1] by definition).

Figures 4(d)–4(f) show the dependence of C, N , and P on
k for ρ

pos
± , respectively. Note that C, N , and P take the same

values for both ρ+ and ρ−. In the limit k → 0, C, N , and P
approach the upper bounds as C → 1

3 , N →
√

5−2
6 , and P →

5
9 . In the opposite limit k → ∞, these values converge as C →
0, N → 0, and P → 1, which corresponds to those quantities
for the two-mode vacuum states.

Photon detection occurs less frequently when k is smaller,
because the probability of photon detection in the interval dt
at detectors P or M is given by kγ1 Tr [L†

±L±ρ]dt . Therefore,
on average, an infinitely long observation time is required
before photon detection to approach the upper bounds for the
degree of phase coherence and quantum entanglement in the
limit k → 0.

VI. CONCLUDING REMARKS

We have analyzed two decoupled quantum van der Pol
oscillators and demonstrated that quantum measurement
backaction of conditional photon detection induces instanta-
neous phase synchronization of the oscillators. In-phase or
antiphase coherence between the oscillators has been ob-
served instantaneously after photon detection, which decays
gradually in the weak quantum regime or quickly in the
strong quantum regime until the next photon detection. In the
strong quantum regime, a short-time increase in the quantum
entanglement has also been observed. In the quantum limit,
we analytically obtained the upper bounds for the increase in
quantum entanglement and phase coherence.

In this paper, we presented only the results for the
case with two identical oscillators under the measurement
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without inefficiency. For the case with oscillators whose nat-
ural frequencies are slightly different, we also confirmed
numerically that almost the same results as in Figs. 2 and 3 are
obtained except for the phase difference shown in Fig. 2(b) or
3(b); in this case, the phase difference between the oscillators
increases or decreases with a constant rate (i.e., with the
frequency difference) between the jumps to 0 or π caused by
photon detection. The results in the quantum limit analyzed in
Sec. V are also independent of the natural frequencies of the
two oscillators. As for the measurement inefficiency [56], we
confirmed numerically that it mainly affects the frequency of
photon detection. This is because the probability of photon de-
tection is proportional to the measurement efficiency, whereas
the system state just after photon detection is not strongly
affected as the dN± terms in Eq. (1) are independent of the
measurement efficiency.

Recently, physical implementations of the quantum vdP os-
cillator with ion trap systems [16,17] and optomechanical sys-
tems [18,32] have been discussed. Additional single-photon
dissipation and photon detectors can also be introduced
[53,57]. The physical setup considered in the present study
does not require explicit mutual coupling between the os-
cillators. Therefore, it can, in principle, be implemented by
using existing experimental methods and provide a method for
generating the phase-coherent states of quantum limit-cycle
oscillators.
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APPENDIX: SLH FRAMEWORK

In this Appendix, we derive the SME (1) using the SLH
framework to describe cascade and concatenate connections
of the quantum system components [45,46]. In this frame-
work, the parameters in the time evolution of a quantum
system ρ are specified by G = (S, L, H ) with

S =
⎛
⎝S11 · · · S1n

...
...

...

Sn1 · · · Snn

⎞
⎠, L =

⎛
⎝L1

...

Ln

⎞
⎠, (A1)

where S is the scattering matrix with operator entries satis-
fying S†S = SS† = In, L is a coupling vector with operator
entries, and H is a self-adjoint operator referred to as the
system Hamiltonian. We denote by In an identity matrix with
n dimensions.

With these parameters, the time evolution of the system
obeys the master equation

dρ

dt
= −i[H, ρ] +

n∑
i=1

D[Li]ρ, (A2)

where S is involved in the calculation of the cascade and con-
catenation products and has an important role in determining
the forms of H and L of the whole network system consisting

FIG. 5. (a) Cascade and (b) concatenate connections of the two
system components G1 and G2.

of the system components. This specification of parameters is
based on Hudson-Parthasarathy’s work [59].

The cascade product [Fig. 5(a)] of G1 = (S1, L1, H1) and
G2 = (S2, L1, H2) is given by

G1�G2 =
(

S2S1, L2 + S2L1, H1 + H2

+ 1

2i
(L†

2S2L1 − L†
1S†

2L2)

)
, (A3)

and the concatenation product [see Fig. 5(b)] of G1 and G2 is
given by

G1 � G2 =
[(

S1 0
0 S2

)
,

(
L1

L2

)
, H1 + H2

]
. (A4)

Our aim is to derive the SME (1) of the physical setup
depicted in Fig. 1 [45,46]. To this end, we denote GQV DP

j
as the parameters of the jth quantum vdP oscillator with an
additional single-photon dissipation,

GQV DP
j =

⎡
⎢⎣I3,

⎛
⎜⎝

√
γ1a†

j√
γ2a2

j√
γ3a j

⎞
⎟⎠, ωa†

j a j

⎤
⎥⎦. (A5)

The concatenate connection of GQV DP
1 and GQV DP

2 is

GQV DP
1 � GQV DP

2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I6,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
γ1a†

1√
γ1a†

2√
γ2a2

1√
γ2a2

2√
γ3a1√
γ3a2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
∑
j=1,2

ωa†
j a j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A6)

where we have changed the order of the elements in L for
simplicity of notation.

In this study, we consider a 50:50 beam splitter. The pa-
rameters of the beam splitter GBS for the output fields of the
two baths

GBS =

⎡
⎢⎣

⎛
⎜⎝

I4 O42

O24

(
1√
2

− 1√
2

1√
2

1√
2

)⎞
⎟⎠, 0, 0

⎤
⎥⎦, (A7)

where we denote by Onm a zero matrix with the dimensions
n × m.
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The cascading connection of the two above-mentioned components is given by

GQV DP
1 � GQV DP

2 �GBS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎝

I4 O42

O24

(
1√
2

− 1√
2

1√
2

1√
2

)
⎞
⎟⎟⎠,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
γ1a†

1√
γ1a†

2√
γ2a2

1√
γ2a2

2√
γ3

a1−a2√
2√

γ3
a1+a2√

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
∑
j=1,2

ωa†
j a j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A8)

Using transformation D[ a1+a2√
2

]ρ + D[ a1−a2√
2

]ρ = D[a1]ρ + D[a2]ρ, the quantum master equation (A2) with the parameters
given in Eq. (A8) gives dρ = L0ρdt of the SME (1). Then, using the quantum filtering theory [47,48], SME (1) can be obtained.
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