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The collective phase response to a macroscopic external perturbation of a population of interacting
nonlinear elements exhibiting collective oscillations is formulated for the case of globally coupled
oscillators. The macroscopic phase sensitivity is derived from the microscopic phase sensitivity of the
constituent oscillators by a two-step phase reduction. We apply this result to quantify the stability of the
macroscopic common-noise-induced synchronization of two uncoupled populations of oscillators under-
going coherent collective oscillations.

DOI: 10.1103/PhysRevLett.101.024101 PACS numbers: 05.45.Xt, 05.40.Ca, 82.40.Bj

Nature possesses various examples of systems com-
posed of many nonlinear elements in which, through mu-
tual interactions, coherent collective dynamics emerges
[1–10]. The collective dynamics of the population is gen-
erally not a simple superposition of the microscopic dy-
namics of the constituent elements; due to nonlinearities, it
can differ qualitatively. Understanding how the micro-
scopic properties give rise to the macroscopic collective
properties of the system and formulating the theory in a
simple closed form at the macroscopic level is a funda-
mental problem in nonlinear dynamics.

If the population undergoes a stable macroscopic limit-
cycle oscillation, it can most simply be described by a
single macroscopic phase variable. By knowing the collec-
tive phase response of the macroscopic oscillation with
respect to external perturbations, we can describe the
dynamics of the population by the phase picture, much
like for single microscopic oscillators [1–3]. The collective
phase response can be measured operatively by macro-
scopically applying an external perturbation to the popu-
lation without recourse to the microscopic details [1,10].
However, to understand how the microscopic dynamics of
the constituent elements and their mutual interactions con-
spire to become a macroscopic phase response, it is neces-
sary to develop a statistical mechanical approach.

In this Letter, we formulate this problem for globally
coupled oscillators as a simple model of macroscopic
populations exhibiting collective oscillations. Global cou-
pling is the simplest form of mutual interactions, which is
both conceptually and practically important because it
serves as a starting point for theoretical analysis of various
network-coupled dynamical systems and because it is real-
ized in experimental systems [1–3,6,7]. We quantitatively
derive the collective phase sensitivity, which is the linear
response coefficient of the macroscopic collective phase
response, from the microscopic phase sensitivity of the

constituent oscillators using a two-step phase reduction
on the micro- and macroscopic scales.

The collective phase sensitivity is a fundamental quan-
tity characterizing the response of a macroscopic limit-
cycle oscillation to weak external perturbations. As one
application, we analyze macroscopic common-noise-
induced synchronization of the collective oscillations be-
tween two uncoupled populations. Though not treated in
this Letter, the entrainment of a population to external
forcing or synchronization between populations can also
easily be analyzed using the collective phase sensitivity.

Let us give a general definition of the collective phase
sensitivity first. We consider a population of globally
coupled noisy identical limit-cycle oscillators collectively
exhibiting stable macroscopic limit-cycle oscillations. We
assume that the effect of coupling, noise, and perturbations
is sufficiently weak, so that the orbit of each microscopic
oscillator is always near its limit cycle. We can then
describe each oscillator by the phase � and the whole
population by a single-oscillator phase probability density
function (PDF)P��; t� of the constituent oscillators. As the
population undergoes limit-cycle oscillations, P��; t� is
given in the form of a rotating wave packet of constant
shape (see Figs. 1 and 3)

 P��; t� � f�����t��; ��t� � �t��; (1)

where f��� represents the wave packet, ��t� the collective
phase of the population (location of the wave packet) at
time t, � the frequency of the collective oscillation, and �
the initial collective phase. We assume � 2 ���;�� and
impose a periodic boundary condition f��� 2�� � f���.

At the instant that the collective phase is �0, we apply a
macroscopic perturbation of magnitude and direction s that
acts uniformly on all oscillators. The shape of P��; t�
transiently deforms but, due to the stability of the collective
oscillations, eventually settles into its stationary shape
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Eq. (1). We denote the perturbed PDF after a sufficiently
long time t0 as P1��; t� t0� � f����1��0; s; t0��, and
the unperturbed PDF after time t0 as P2��; t� t0� �
f����2��0; t0��, where �2 � �0 ��t0. The collective
phase response function G��0; s� is defined as the
asymptotic difference of �1��0; s; t0� and �2��0; t0�:
G��0; s� � limt0!1��1��0; s; t0� ��2��0; t0�� [1]. This
is, in general, a function of �0 and s. When the impulse
magnitude jsj is small enough, the collective phase re-
sponse function is proportional to s and is given by
G��0; s� � ���0� � s, where ���0� is the collective phase
sensitivity [2].

We consider globally coupled oscillators described by
the following Langevin equation:

 

_X j�t� � F�Xj�t�� �
1

N

XN
k�1

V�Xk�t�� �
���������
2D0

p
�j�t� � s�t�;

(2)

for j � 1; . . . ; N, where Xj is the state of the jth oscillator,
F�X� the dynamics of a single oscillator, V�X� the contri-
bution from each oscillator to the mean field, D0 the noise
intensity, �j�t� an independent zero-mean Gaussian white
noise of unit intensity, which satisfies h�j�t��k�t

0�i �

I�j;k��t� t0�, where I is the unit matrix, and s�t� the
macroscopic external perturbation common to all oscilla-
tors. When isolated, each oscillator has a stable limit cycle
X0�t� T� � X0�t� with period T � 2�=!. We define a
phase ��X� 2 ���;�� around the limit cycle, which in-
creases with a constant natural frequency ! [2]. We as-
sume that the effect of coupling, noise, and perturbation is
sufficiently weak.

To derive a dynamical equation for the single-oscillator
phase PDF of our system, we perform the first, microscopic
phase reduction of Eq. (2). Using the microscopic phase
sensitivity of each oscillator Z��� � rX�jX�X0��� [2], the
dynamics of the system can be reduced to the following
Langevin phase equation: _�j�t� � !� 1

N

PN
k�1 Z��j� �

V�X0��k�� �
���������
2D0

p
Z��j� � �j�t� � ���j; t�, where the ef-

fect of the perturbation is given by ���j; t� � Z��j� � s�t�.
From this equation, after averaging and taking the limit as
N ! 1 (see [2,11] for details), we obtain the nonlinear
Fokker-Planck equation (FPE) for the single-oscillator
phase PDF P��; t�:
 

@
@t
P��; t� � �

@
@�

��
!�

Z �

��
�����0�P��0; t�d�0

� ���; t�
�
P��; t�

�
�D

@2

@�2 P��; t�; (3)

where the phase coupling function is given by ����
�0� � �1=2��

R
�
�� Z���  � � V��

0 �  �d and the dif-
fusion coefficient by D � �D0=2��

R
�
�� Z� � � Z� �d .

The external perturbation ���; t� in the drift term is not
averaged but kept as a time-dependent term.

To realize stable macroscopic oscillations, we assume
that the coupling function ���� is unimodal and satisfies

the in-phase (attractive) condition d����=d�j��0 < 0 [2].
When there is no external perturbation [���; t� 	 0], the
solution of Eq. (3) is given by a rotating wave packet of the
form Eq. (1), which behaves as follows: In the absence of
independent noise (D0 � 0), the oscillators are completely
synchronized, so that P��; t� is delta-peaked. As D0 is
increased, P��; t� takes on a finite width while rotating at
a constant speed. As D0 increases past a critical value Dc,
the collective oscillation disappears, and P��; t� 	 1=2�.
For the following analysis, we take 0<D0 <Dc.

We now derive the collective phase sensitivity � ���
from the microscopic phase sensitivity Z��� by seeking a
closed equation for the collective phase ��t�. This is
performed by the second, macroscopic phase reduction,
similarly to the derivation of wave front dynamics for
oscillatory media [2]. Our treatment here is a generaliza-
tion of [11] for nonlocally coupled noisy oscillators. Let us
ignore the perturbation for the moment [���; t� 	 0].
Introducing a corotating phase with the wave packet
� � ����t� � ���t��, the solution of Eq. (3),
P��; t� � f���, satisfies D�d2=d�2�f��� � �d=d��

f��!��� �

R
�
�� ���� �0�f��0�d�0�f���g � 0. Small de-

viations u��� from this unperturbed wave packet f��� obey
a linearized equation @tu��; t� � L̂u��; t�, where the linear
operator L̂ is given by L̂u��� � D d2

d�2 u��� � d
d� 


f��! � �� �
R
�
�� ��� � �0�f��0�d�0�u���g � d

d� ff��� 
R
�
�� ��� � �0�u��0�d�0g. Defining the inner product as
�u����; u���� �

R
�
�� u

����u���d�, we introduce an adjoint
operator L̂� of L̂ by �u����; L̂u���� � �L̂�u����; u����. In
the calculation below, we need only zero eigenfunctions
u0��� of L̂ and u�0��� of L̂�, which we normalize as
�u�0���; u0���� � 1. It is easy to check that u0��� can be
chosen as u0��� � df���=d�, reflecting the translational
symmetry of Eq. (3) [2,11].

We now incorporate the effect of perturbation ���; t�. To
obtain a closed equation for ��t�, we assume that the
solution of Eq. (3) is still given in the form of Eq. (1),
ignoring its slight deformation at the lowest order. Instead,
we allow the constant � in Eq. (1) to vary slowly with time
as ��t�. Plugging P��; t� � f���t�� � f����t���t��
into Eq. (3), we obtain u0��� _��t� � �d=d��f�����t�
��t�; t�f���g. Taking the inner product with u�0��� on
both sides yields _��t� �

R
�
�� u

�
0����d=d��f�����t�

��t�; t�f���gd�. Noting that �����t���t�; t� � ����
��t�; t� � Z�����t�� � s�t�, we arrive at the macroscopic
phase equation obeyed by ��t�:

 

_��t� � �� � ���t�� � s�t�; (4)

where the collective phase sensitivity is given by

 � ��� �
Z �

��

�
�
du�0���
d�

f���
�
Z�����d�: (5)

Thus, � ��� is expressed as a convolution of the micro-
scopic phase sensitivity Z��� with a kernel �u�0���

0f���.
Note that the kernel is not merely the PDF f��� as we
would naively expect.
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Now let us illustrate our results with an example of N
noisy globally coupled Stuart-Landau (SL) oscillators
described by the following Langevin equation [2,11]:
_Wj�t� � �1 � i!0�Wj � �1 � i��jWjj

2Wj � �K=N� 
PN
k�1 Wk �

���������
2D0

p
�j�t� � s�t�. Here the complex ampli-

tude Wj � WR
j � iW

I
j (R and I express real and imaginary

components, respectively) describes the state of the jth
oscillator [i.e., Xj � �WR

j ;W
I
j �], !0 and � are oscillator

parameters, K the coupling strength, s�t� � sR�t� � isI�t�
the macroscopic complex perturbation, D0 the noise in-
tensity, and �j�t� � �Rj �t� � i�

I
j�t� the independent

complex Gaussian white noise of zero mean and unit in-
tensity which satisfies h�Rj �t��

R
k �t
0�i � h�Ij�t��

I
k�t
0�i �

�j;k��t� t0� and h�Rj �t��
I
k�t
0�i � 0. The phase� is defined

on the complex plane as � � argW � � lnjWj, which
grows constantly with a natural frequency ! � !0 � �
in the absence of coupling and other external effects.
The microscopic phase sensitivity has both real and
imaginary parts, given analytically as Z��� �
�ZR���; ZI���� � �� sin� � � cos�; cos� � � sin��,

and the phase coupling function is given by �����0� �

�K
���������������
1� �2

p
sin����0 � ��, � � arg�1� i�� [2,11].

We use the complex order parameter A�t� � R�t�ei ~��t� �

�1=N�
PN
k�1 e

i�k�t� ’
R
�
�� e

i�f�����t��d� to quantify
the collective oscillation, whose modulus R�t� serves as a
measure of the coherence [2,11]. By choosing f��� so thatR
�
�� e

i�f���d� is positive and real, and taking the initial
collective phase as � � 0, namely, P��; 0� 	 f���, the
phase ~��t� of the order parameter A�t� matches the collec-
tive phase ��t� defined in Eq. (1).

Figure 1 shows the stationary PDF f���, the zero eigen-
functions u0��� and u�0���, and the kernel �u�0���

0f���,
obtained by numerically solving Eq. (3). The parameters
!0 � 2, � � 1, and K � 0:05 are fixed, while the noise
intensity is varied as D0 � 0:009, 0.011, and 0.012. As D0

approaches the critical value Dc � 0:0125 [2,11], f���
becomes flat, while the amplitudes of u�0��� and the kernel
�u�0���

0f��� increase. Figure 2(a) shows the real part of
the collective phase sensitivity 	R��� calculated using the
results shown in Fig. 1 [the imaginary part is simply given
by 	I��� � 	R��� �=2� due to the symmetry of the SL
oscillator]. For comparison, we show the microscopic
phase sensitivity ZR���, with � � �, which corresponds
to the D0 ! 0 limit. For D0 > 0, 	R��� is different from
ZR��� due to distributed individual phases. As D0 ! Dc,
	R��� diverges as �Dc �D0�

�1=2 [12]. Figure 2(b) com-
pares the theoretical 	R��� at D0 � 0:009 with those
directly measured by adding sufficiently weak impulses
(jsj � 0:001) to the nonlinear FPE (3) and to the Langevin
equation (2) with N � 10 000 oscillators [13]. The results
of the nonlinear FPE corresponding to the limit N ! 1
agree well with the theory [14]. The results of the Langevin
simulation show a wide distribution of the values because
N is necessarily finite, though the piecewise average value
shows reasonable agreement with the theory [15].

As an application of the collective phase sensitivity, we
analyze the stability of the synchronized state of two
uncoupled populations of collectively oscillating, glo-
bally coupled SL oscillators due to a macroscopic com-
mon noise. Consider two uncoupled macroscopic phase
oscillators driven by a common, weak Gaussian noise
s�t�: _��
��t� � �� ����
��t�� � s�t� (
 � 1; 2), where
the noise correlation is given by hs�t�s�0�i � IC�t�. In
Ref. [16], it is shown that a weak common Gaussian noise
will cause synchronization of uncoupled oscillators, and
the Lyapunov exponent that quantifies the growth rate of an
infinitesimal phase difference is given by � � �1=2��
R
1
0 dtC�t�

R
�
�� d�� 00��� � �����t�, where � � 0 al-

ways holds. For the globally coupled SL oscillators, the
perturbation s�t� has real and imaginary components. We
use the Ornstein-Uhlenbeck process _z�t� � �z=��
��t�=�, with ��t� a zero-mean Gaussian white noise of unit
intensity, to create colored Gaussian noises zR;I�t� with the
correlation time � and put s�t��

������
2S
p
�zR�t�;zI�t��, where S

controls the intensity of common noise. The correlation
function is given as C�t� � S exp��jtj=��=�.

Figure 3 shows the results for two uncoupled popula-
tions of N � 1000 globally coupled SL oscillators receiv-

FIG. 2 (color online). Collective phase sensitivity of the glob-
ally coupled SL model. (a) Theoretical curves of 	R���. Single-
oscillator phase sensitivity ZR��� is also shown with � � �.
(b) 	R���, found from theory and from numerical simulations of
nonlinear FPE and the Langevin equation (LE). For the LE
simulation, individual raw responses are shown as dots, and
piecewise mean values (25 bins) are shown as a solid line.
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FIG. 1 (color online). Globally coupled SL model.
(a) Stationary PDF f���, (b) zero eigenfunction u�0��� of L̂�,
(c) zero eigenfunction u0��� of L̂, and (d) kernel �u�0���

0f���.
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ing macroscopic common Gaussian noise of intensity S �
0:001 with correlation times � � 1:0, � � 0:5, and �! 0
(white limit). Other parameters are !0 � 2, � � 1, K �
0:05, and D0 � 0:007. Figures 3(a) and 3(d) show the time
evolution of the real part of the order parameter A�t� of the
two populations obtained by the Langevin simulation. At
time t � 0, the two are not synchronized, but, by t � 600,
they show near-complete synchronization, demonstrating
that macroscopic common noise can cause the collective
oscillations of two uncoupled populations to synchronize.
We stress that this is purely a macroscopic phenomenon of
the collective phase becoming entrained; the oscillators in
the two populations never become individually synchro-
nized. Figures 3(b) and 3(e) show the distributions of the
states fWjg of the microscopic oscillators on a complex
plane at t � 0 and t � 600, and Figs. 3(c) and 3(f) show
the corresponding histogram of the phases f�jg. At t � 0,
the distributions of oscillators only slightly overlap, while,
by t � 600, they overlap considerably. Figure 3(g) com-
pares the Lyapunov exponent � as measured from the
Langevin simulation, averaged over 1500 sample paths,
with the theoretical results. Despite the relatively large
fluctuations shown by the collective oscillations, we see
that � shows good agreement with theory. As D0 ap-
proaches the critical value Dc, the amplitude of the collec-
tive phase sensitivity � ��� increases, so � takes on ever
larger, negative values. However, near the critical point, the
phase response becomes strongly nonlinear, so that the
numerical results diverge from the linear theory based on
the collective phase sensitivity.

In summary, we derived the macroscopic collective
phase sensitivity from the microscopic phase sensitivity
for a population of globally coupled oscillators and ana-
lyzed the common-noise-induced synchronization of two
such populations. By virtue of the assumption that the
constituent oscillators are only weakly perturbed, we could
utilize the phase-reduction method to construct a general
framework for the collective phase sensitivity, which may
bring a new perspective to the existing body of research on
coupled collective oscillations [8–10]. Since we treated the
SL oscillators as an example, the resulting collective phase
sensitivity was always sinusoidal, with only a change in
amplitude. For other types of oscillators, the shape of the
collective phase sensitivity may differ significantly than
that of its constituent oscillators. Furthermore, the collec-
tive phase response to strong macroscopic perturbations
should prove to be even more intriguing, though our
present framework based on phase reduction is not appli-
cable in this scenario. More detailed and generalized
analysis will be reported in the near future.
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