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We develop a theory of collective phase description for globally coupled noisy excitable elements exhibiting
macroscopic oscillations. Collective phase equations describing macroscopic rhythms of the system are derived
from Langevin-type equations of globally coupled active rotators via a nonlinear Fokker-Planck equation. The
theory is an extension of the conventional phase reduction method for ordinary limit cycles to limit-cycle
solutions in infinite-dimensional dynamical systems, such as the time-periodic solutions to nonlinear Fokker-
Planck equations representing macroscopic rhythms. We demonstrate that the type of the collective phase
sensitivity function near the onset of collective oscillations crucially depends on the type of the bifurcation,
namely, it is type I for the saddle-node bifurcation and type II for the Hopf bifurcation.
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I. INTRODUCTION

The collective rhythms emerging from coupled dynamical
elements are the most remarkable synchronization phenomena
in nature [1–5]. These collective rhythms, or collective oscilla-
tions, are exhibited not only by populations of self-oscillatory
elements, but also by populations of excitable elements, in
which the elemental dynamics is not self-oscillatory, but its
coupling gives rise to nontrivial collective dynamics [6–8].
The active rotator is a well-known, convenient phenomeno-
logical model that can describe both excitable and oscillatory
dynamics. Systems of interacting active rotators have been
extensively studied and their collective dynamics have been
analyzed [9–15].

Macroscopic synchronization between interacting groups
of globally coupled phase oscillators exhibiting collective
rhythms has attracted our attention because many rhythms
in the real world are actually collective rhythms generated
by coupled networks of microscopic elements [16,17]. The
recent introduction of the Ott-Antonsen ansatz [18–20] has
facilitated theoretical investigations in this direction, although
applicable only to a restricted class of coupled phase os-
cillators. As an alternative general approach to study the
phase synchronization between macroscopic rhythms, we
have formulated a theory of collective phase description for
coupled phase oscillators, which gives a reduced collective
phase equation for the macroscopic rhythms [21–25]. With
this method, we can analyze the synchronization properties
between collective rhythms in a closed way at the macroscopic
level. Each group of the oscillators can be treated as a
single macroscopic oscillator, which facilitates theoretical
investigations of interacting collective rhythms. In particular,
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we have derived a formula that relates the collective phase
response of the macroscopic rhythm to the individual phase
responses of the constituent oscillators [21–25].

In this paper, we develop a more generalized theory of
collective phase description, which is applicable to macro-
scopic rhythms generated by excitable elements as well as
by oscillatory elements. Specifically, we consider interacting
groups of globally coupled noisy active rotators and derive
a coupled collective phase equation describing them. Our
present theory can be applied to a broader class of interacting
groups of globally coupled dynamical elements, and includes
our previous theory for globally coupled noisy phase oscilla-
tors [21–23] as a special case. As an example, we analyze the
type of the collective phase sensitivity function near the onset
of collective oscillations, and reveal that it crucially depends
on the type of bifurcation, as in the phase sensitivity functions
of ordinary dynamical systems [26,27].

Recently, Schwabedal and Pikovsky [28,29] studied some-
what similar issues on effective phase description of noise-
induced oscillations in excitable systems. While their study
treated a one-body problem for an ensemble of statistically
independent excitable elements at the microscopic level, this
paper focuses on globally coupled noisy excitable elements
exhibiting collective oscillations, which can be considered
a one-body problem at the macroscopic level. Specifically,
the focus of this paper is on the development of a phase
reduction method for genuinely collective oscillations arising
from mutual interactions in coupled dynamical systems.

The organization of this paper is as follows. In Sec. II,
we formulate a theory of collective phase description for
globally coupled noisy excitable elements. In Sec. III, we
illustrate our theory using numerical simulations and reveal
that the collective phase sensitivity function behaves very
differently, depending on the bifurcation type of the collective
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oscillations. Concluding remarks are given in Sec. IV. The
attached Appendices clarify the relation of our present theory
to the conventional phase reduction theory of ordinary limit-
cycle oscillators (Appendix A), present the results for a
system of globally coupled phase oscillators with translational
symmetry (Appendix B), and outline further extensions to
general systems of globally coupled dynamical elements
(Appendix C).

II. FORMULATION OF COLLECTIVE
PHASE DESCRIPTION

In this section, we formulate a theory of collective phase
description for globally coupled noisy active rotators exhibit-
ing macroscopic oscillations. The theory can be considered a
phase reduction method for limit-cycle solutions in infinite-
dimensional dynamical systems. The relation of the present
theory to the conventional phase reduction of ordinary limit-
cycle solutions is given in Appendix A. The present theory is
also an extension (which we explain in Appendix B) of our
previous theory for phase oscillators [21–23].

A. Langevin-type equations and the nonlinear
Fokker-Planck equation

We consider interacting groups of globally coupled active
rotators described by the following equation:

φ̇
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j (t) = v

(
φ

(σ )
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) + 1
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for j = 1, . . . ,N and (σ,τ ) = (1,2) or (2,1), where φ
(σ )
j (t) is

the state of the j th active rotator at time t in the σ th group
consisting of N elements. The first term on the right-hand
side represents the intrinsic dynamics of the active rotator;
the second term represents the internal coupling between the
elements in the same group; the third term represents the
noise independently applied to each rotator; the fourth term
represents the external forcing common to all rotators in
the σ th group; and the last term represents the external
coupling between the elements belonging to different groups.
Each isolated active rotator obeys φ̇ = v(φ), which describes
either excitable or oscillatory dynamics [9]. The internal and
external coupling functions are given by �(φ(σ )

j ,φ
(σ )
k ) and

�στ (φ(σ )
j ,φ

(τ )
k ), respectively. The characteristic intensity of the

internal coupling within a group is scaled to unity, whereas that
of the external coupling between the groups is given by εg � 0.
The state-dependent sensitivity function of the active rotator
is Z(φ(σ )

j ), which corresponds to the phase sensitivity function
in the case of phase oscillators. We assume that the rotator
variable φ takes values in [0,2π ] and that the above functions,
i.e., v(φ), Z(φ), �(φ,φ′), and �στ (φ,φ′), are 2π periodic in the
respective state variables. The external forcing is denoted by
pσ (t), the characteristic intensity of which is given by εp � 0.

The noise ξ
(σ )
j (t) is assumed to be independent white Gaussian

noise [30,31], the statistics of which are given by〈
ξ

(σ )
j (t)

〉 = 0,
〈
ξ

(σ )
j (t)ξ (τ )

k (s)
〉 = 2δjkδστ δ(t − s). (2)

The noise intensity is characterized by D � 0.
In the continuum limit, i.e., N → ∞, the Langevin-type

equation (1) describing coupled groups of active rotators
can be transformed into the coupled nonlinear Fokker-Planck
equation as follows (see, also, Refs. [2,7,9,16,21,23]). Let
f (σ )(φ,t) represent the one-body probability density function
of rotator state φ in the σ th group, which is normalized as∫ 2π

0
dφ f (σ )(φ,t) = 1. (3)

Because the mean-field theory exactly holds for the case of
global coupling in the continuum limit [2], we can average
the internal and external coupling terms in Eq. (1) by the one-
body probability density functions f (σ )(φ,t) and f (τ )(φ,t),
respectively. Then, the Langevin-type equation (1) takes the
form of a single-rotator equation as follows:
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The single-rotator Langevin-type equation (4) can be trans-
formed into the following coupled nonlinear Fokker-Planck
equation:

∂

∂t
f (σ )(φ,t) = − ∂

∂φ
[V (σ )(φ,t)f (σ )(φ,t)] + D

∂2

∂φ2
f (σ )(φ,t),
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or, explicitly,
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f (σ )(φ,t)
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f (σ )(φ,t) − εp

∂
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[Z(φ)f (σ )(φ,t)]pσ (t)

− εg

∂
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0
dφ′ �στ (φ,φ′)f (τ )(φ′,t)f (σ )(φ,t)

]
. (7)

The first two terms on the right-hand side of the nonlinear
Fokker-Planck equation (7) represent the internal dynamics of
the σ th group, the third term represents the external forcing
applied to the σ th group, and the last term represents the
external coupling between the σ th group and the τ th group.
When the external forcing and the external coupling are absent,
i.e., when εp = εg = 0, each group of active rotators obeying
Eq. (7) is assumed to exhibit stable collective oscillation, i.e.,
a stable time-periodic solution. We further assume that this
situation persists even if εp and/or εg become slightly positive.
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B. Collectively oscillating solution
and its Floquet eigenfunctions

Let us assume εp = εg = 0 and focus on a single group. The
group index σ is dropped in this section. Then, the nonlinear
Fokker-Planck equation (7) with εp = εg = 0 can be written
in the following form:

∂

∂t
f (φ,t) = − ∂

∂φ

[(
v(φ) +

∫ 2π

0
dφ′ �(φ,φ′)f (φ′,t)

)
f (φ,t)

]

+D
∂2

∂φ2
f (φ,t). (8)

We now assume the existence of a stable time-periodic solution
to the nonlinear Fokker-Planck equation (8). It is known that
such a solution exists in a certain model of globally coupled
active rotators [9], which we analyze in Sec. III. The stable
time-periodic solution to the nonlinear Fokker-Planck equation
(8) can be described by

f (φ,t) = f0(φ,�(t)), �̇(t) = �, (9)

where � and � are the collective phase and collective
frequency, respectively. By inserting Eq. (9) into the nonlinear
Fokker-Planck equation (8), we find that f0(φ,�) satisfies the
following equation:

�
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]
+ D
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Let u(φ,�,t) represent a small disturbance to the unperturbed
collectively oscillating solution, and we consider a slightly
perturbed solution

f (φ,t) = f0(φ,�(t)) + u(φ,�(t),t). (11)

Equation (8) is then linearized in u(φ,�,t), i.e.,

∂

∂t
u(φ,�,t) = L̂(φ,�)u(φ,�,t). (12)

Here, the linear operator L̂(φ,�) is given by
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]
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Note that L̂(φ,�) is time-periodic through � and, therefore,
Eq. (12) is a Floquet-type system with a periodic linear

operator. By defining the inner product of 2π -periodic
functions as

[[u∗(φ,�), u(φ,�)]] = 1

2π

∫ 2π

0
d�
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0
dφ u∗(φ,�)u(φ,�),

(15)

we introduce an adjoint operator of L̂(φ,�) by

[[u∗(φ,�), L̂(φ,�)u(φ,�)]] = [[L̂∗(φ,�)u∗(φ,�), u(φ,�)]].

(16)

By partial integration, the adjoint operator L̂∗(φ,�) is explic-
itly given by
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Ĵ ∗(φ,�) + �

∂

∂�

]
u∗(φ,�), (17)

where
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In the calculation below, we use the Floquet eigenfunctions
of the periodic linear system [Eq. (12)] and its adjoint system
associated with the zero eigenvalue, i.e.,

L̂(φ,�)u0(φ,�) =
[
Ĵ (φ,�) − �

∂

∂�

]
u0(φ,�) = 0, (19)
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0(φ,�) = 0. (20)

Note that the right zero eigenfunction u0(φ,�) can be
chosen as

u0(φ,�) = ∂

∂�
f0(φ,�), (21)

as is confirmed by differentiating Eq. (10) with respect to �. By
using the inner product (15) with the right zero eigenfunction
(21), the left zero eigenfunction u∗

0(φ,�) is normalized as

[[u∗
0(φ,�), u0(φ,�)]] = 1

2π
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0
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0
dφ u∗

0(φ,�)u0(φ,�)

= 1. (22)

Here, we should note that the following equation holds [see
also Eq. (A16) and Ref. [32]]:
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=
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0
dφ

[
u∗
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∂

∂�
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∂
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u∗
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]
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�

∫ 2π

0
dφ [u∗

0(φ,�)Ĵ (φ,�)u0(φ,�)

−u0(φ,�)Ĵ ∗(φ,�)u∗
0(φ,�)] = 0. (23)
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Therefore, the following normalization condition is satisfied
independently for each � as∫ 2π

0
dφ u∗

0(φ,�)u0(φ,�) = 1. (24)

In the following sections, by using the collectively oscillating
solution and its Floquet zero eigenfunctions, we formulate
a theory of collective phase description for globally coupled
active rotators.

C. Collective phase reduction

Let us introduce the effects of weak external forcing and
external coupling, i.e., we assume 0 < εp � 1 and 0 < εg �
1. We treat the third term and the last term in Eq. (7) as
perturbations. Using the idea of phase reduction [2], we
can derive a coupled collective phase equation from the
nonlinear Fokker-Planck equation (7). Namely, we project the
dynamics of the nonlinear Fokker-Planck equation (7) onto
the unperturbed collectively oscillating solution as

�̇(σ )(t) =
∫ 2π

0
dφ u∗

0(φ,�(σ ))
∂

∂t
f (σ )(φ,t)

� � − εp

∫ 2π

0
dφ u∗

0(φ,�(σ ))
∂

∂φ
[Z(φ)f0(φ,�(σ ))]

×pσ (t) − εg

∫ 2π

0
dφ u∗

0(φ,�(σ ))
∂

∂φ

×
[∫ 2π

0
dφ′ �στ (φ,φ′)f0(φ′,�(τ ))f0(φ,�(σ ))

]
,

(25)

where we approximate f (σ )(φ,t) by the unperturbed solution
f0(φ,�(σ )) and use the fact that∫ 2π

0
dφ u∗

0(φ,�)
∂

∂t
f0(φ,�) = �

∫ 2π

0
dφ u∗

0(φ,�)u0(φ,�)

= �. (26)

Thus, the collective phase equation is obtained in the following
form:

�̇(σ )(t) = � + εpζ (�(σ ))pσ (t) + εg�στ (�(σ ),�(τ )). (27)

Here, the collective phase sensitivity function is given by

ζ (�(σ )) =
∫ 2π

0
dφ Z(φ)k0(φ,�(σ )), (28)

and the effective phase coupling function is given by

�στ (�(σ ),�(τ )) =
∫ 2π

0
dφ

∫ 2π

0
dφ′ �στ (φ,φ′)

× k0(φ,�(σ ))f0(φ′,�(τ )), (29)

where the kernel function is defined as

k0(φ,�) = f0(φ,�)
∂

∂φ
u∗

0(φ,�). (30)

In the next section, we simplify the collective phase equation
by applying the near-identity transformation.

D. Normal form of the collective phase equation

By applying the near-identity transformation [2,25,32] to
Eq. (27), namely, by slightly [i.e., on the order of O(εg)]

changing the definition of the collective phase �, we can obtain
the following collective phase equation:

�̇(σ )(t) = � + εpζ (�(σ ))pσ (t) + εgγστ (�(σ ) − �(τ )), (31)

where the collective phase coupling function is given by

γστ (�(σ ) − �(τ )) = 1

2π

∫ 2π

0
dλ �στ (λ + �(σ ), λ + �(τ )),

(32)

or, more explicitly, by

γστ (�) = 1

2π

∫ 2π

0
dλ

∫ 2π

0
dφ

∫ 2π

0
dφ′

×�στ (φ,φ′)k0(φ,λ + �)f0(φ′,λ). (33)

Note that the derivation of Eq. (31) from Eq. (27) follows
the procedures developed in the appendix of Ref. [25] where
the details of the near-identity transformation are given. In
addition, when the external forcing is absent, i.e., when εp = 0,
Eq. (32) can be understood as the result of the averaging
method [2]. In summary, the collective phase equation (31)
with the collective phase sensitivity and the collective phase
coupling functions, i.e., Eqs. (28) and (33), are derived from the
Langevin-type equation (1) via the nonlinear Fokker-Planck
equation (7).

E. Adjoint method for the left zero eigenfunction

Finally, we explain a numerical method for obtaining
the left zero eigenfunction. From Eq. (20), the left zero
eigenfunction u∗

0(φ,�) satisfies

�
∂

∂�
u∗

0(φ,�) = −Ĵ ∗(φ,�)u∗
0(φ,�), (34)

which can be transformed into
∂

∂s
u∗

0 (φ, − �s) = Ĵ ∗(φ, − �s)u∗
0(φ, − �s) (35)

with � = −�s. A relaxation method using Eq. (35), which
numerically calculates the eigenfunction associated with the
zero eigenvalue by evolving Eq. (35) until all eigenfunctions
with negative eigenvalues decay, is a convenient method for
obtaining the left zero eigenfunction [see also Eq. (A23) and
Refs. [27,32,33]].

As mentioned at the beginning of this section, in Ap-
pendix A, we clarify the relation between our present for-
mulation and the conventional phase reduction of ordinary
limit-cycle solutions. In particular, it should be noted that
the variable φ of the nonlinear Fokker-Planck equation plays
the role of the vector component index in Appendix A. In
Appendix B, it is shown that the present formulation includes
our previous theory for phase oscillators [21–23] as a special
case with continuous translational symmetry in φ.

III. NUMERICAL ANALYSIS OF GLOBALLY COUPLED
ACTIVE ROTATORS

In this section, we illustrate our theory (developed in the
preceding section) using numerical simulations. First, we
introduce a complex order parameter and its related quantities,
which we will use to characterize the collective oscillations.
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Thereafter, we present the results of numerical simulations.
In particular, we analyze the type of the collective phase
sensitivity function near the onset of collective oscillations.

A. Order parameters

To quantify the collective oscillations, we introduce a
complex order parameter [2]

R(t)ei�(t) = 1

N

N∑
k=1

eiφk (t) =
∫ 2π

0
dφ eiφf (φ,t), (36)

which is time-dependent. We also use the following real
constant order parameter [9]

S = 〈|R ei� − 〈R ei�〉t |〉t , (37)

where 〈. . .〉t is a long-time average. The order parameter S is
nonzero only when collective oscillations exist. In addition,
using the real and imaginary parts of the complex order
parameter, we introduce the following pair of real order
parameters:

X = R cos �, Y = R sin �. (38)

In visualizing the limit-cycle orbit of the nonlinear Fokker-
Planck equation with the infinite-dimensional state space,
we project the collectively oscillating solution onto the X-Y
plane as

X0(�) + iY0(�) = R0(�)ei�0(�) =
∫ 2π

0
dφ eiφf0(φ,�).

(39)

B. Collectively oscillating solution and other
associated functions

In numerical simulations, we use the following model of
globally coupled active rotators [9]:

v(φ) = ω − r sin(φ), ω,r � 0 (40)

and

�(φ,φ′) = �στ (φ,φ′) = − sin(φ − φ′). (41)

For simplicity, the state-dependent sensitivity function of the
active rotator is assumed to be constant, i.e.,

Z(φ) = 1. (42)

Here, we summarize several properties of the above model [9]:
(i) The active rotators are excitable when ω < r , whereas they
are oscillatory when ω > r . (ii) In the noiseless case, i.e., D =
0, the model exhibits collective oscillations under the condition
ω > r , which emerges via a saddle-node bifurcation. (iii) In the
phase-oscillator limit, i.e., r = 0, the model exhibits collective
oscillations under the condition D < Dc = 1/2, which occurs
via a supercritical Hopf bifurcation.

In our numerical simulations, the parameters of the active
rotators are fixed at ω = 0.50 and r = 0.52, values that satisfy
the excitable condition ω < r . The noise intensity is mostly
chosen to be D = 0.22, for which collective oscillations
exist with the collective frequency � � 0.1955. In numerical
simulations of the nonlinear Fokker-Planck equation (7) and
the adjoint equation (35), we used the pseudospectral method
with 210 modes.

Figure 1 shows the limit-cycle orbit projected on the X-Y
plane, which was obtained from the nonlinear Fokker-Planck
equation (7) with εp = εg = 0, i.e., Eq. (8). The collectively
oscillating solution f0(φ,�) and other associated functions,
i.e., u0(φ,�), u∗

0(φ,�), k0(φ,�), and �(�,�′), are displayed
in Fig. 2.

The collective phase sensitivity function ζ (�) and the col-
lective phase coupling function γστ (�) are shown in Figs. 3(a)
and 3(b), respectively. The collective phase sensitivity function
ζ (�) is quite different from the individual state-dependent
sensitivity function Z(φ) = 1. Despite the fact that Z(φ)
is constant, the collective phase sensitivity function ζ (�)
depends on �, in sharp contrast to the case of globally coupled
phase oscillators where ζ (�) never depends on � if Z(φ) is
constant [22] (see also Appendix B). Consequently, although
the external coupling function has only a first harmonic,
i.e., �στ (φ,φ′) = − sin(φ − φ′), the collective phase coupling
function γστ (�) includes higher harmonics (and also a uniform
component). This is also in contrast to the case of globally
coupled phase oscillators in which γστ (�) is sinusoidal
whenever �στ (φ) is sinusoidal [23] (see also Appendix B).
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FIG. 1. (Color online) Globally coupled active rotators (AR) in the excitable regime exhibiting macroscopic rhythms. (a) Macroscopic
limit-cycle orbit projected on the X-Y plane. (b) Wave forms of X0(�) and Y0(�). Parameters are ω = 0.50, r = 0.52, and D = 0.22, which
give � � 0.1955.
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FIG. 2. (Color online) Globally coupled active rotators (AR). (a) Collectively oscillating solution f0(φ,�). (b) Right zero eigenfunction
u0(φ,�). (c) Left zero eigenfunction u∗

0(φ,�). (d) Kernel function k0(φ,�). (e) Effective phase coupling function �(�,�′). Parameters are
ω = 0.50, r = 0.52, and D = 0.22.

The collective phase sensitivity function ζ (�), measured
by direct numerical simulations of the system by applying
sufficiently weak stimulating impulses with εp = 0.01, is
compared to the theoretical curve in Fig. 3(c). The results
of the nonlinear Fokker-Planck equation corresponding to the
continuum limit N → ∞ agree perfectly with our theory; the
results of the Langevin-type simulation with N = 105 active
rotators averaged over 100 ensembles agree with our theory
within the fluctuations due to finite size effects. Therefore, the

formulation developed in Sec. II has been validated by the
above-described numerical simulations.

C. Types of collective phase sensitivity function

Now, we investigate the dependence of the collective phase
sensitivity function ζ (�) on the noise intensity D. In particular,
we analyze the type of the collective phase sensitivity function
ζ (�) near the onset of collective oscillations.
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FIG. 3. (Color online) Globally coupled active rotators (AR). (a) Collective phase sensitivity function ζ (�). (b) Collective phase coupling
function γ (�). (c) Comparison of collective phase sensitivity functions ζ (�) between theoretical curve (theory) and direct numerical simulations
with impulse intensity εp = 0.01, i.e., Langevin-type equation (Langevin) and nonlinear Fokker-Planck equation (NLFPE). Parameters are
ω = 0.50, r = 0.52, and D = 0.22. In Langevin-type simulations, the number of active rotators in the system is N = 105 and the results are
averaged over 100 ensembles, the means and standard deviations of which are shown.

Figure 4(a) shows the dependence of both the order param-
eter S and the collective frequency � on the noise intensity
D (see also Ref. [9]). As the noise intensity is increased,
collective oscillations arise via a saddle-node bifurcation and
disappear via a supercritical Hopf bifurcation, consistent with
the results found in Ref. [9]. In this paper, we further investigate
the dependence of the collective phase sensitivity function
on the noise intensity. The typical shapes of the collective
phase sensitivity function ζ (�) near the onset of collective
oscillations are displayed in Fig. 4(b). The collective phase sen-
sitivity function near the saddle-node bifurcation (D = 0.10)
satisfies ζ (�) > 0, which is referred to as type I [26,27].

That is, the collective phase is always advanced by positive
weak impulses. In contrast, the collective phase sensitivity
function near the Hopf bifurcation (D = 0.25) is type II
[26,27], that is, ζ (�) has negative parts as well as positive
parts. The above results are the same as those for the finite-
dimensional dynamical system [27]. However, note that they
are the macroscopic collective characteristics of an infinite-
dimensional dynamical system that emerged from interactions
of individual, microscopic elements.

As shown in this example of globally coupled active
rotators, a coupled dynamical system may have multiple
routes (such as saddle-node bifurcation or Hopf bifurcation)
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FIG. 4. (Color online) Globally coupled active rotators (AR). (a) Dependence of order parameter S and collective frequency � on noise
intensity D. (b) Collective phase sensitivity function ζ (�). Parameters are ω = 0.50 and r = 0.52. The collective phase sensitivity function
near the saddle-node bifurcation is type I, whereas that near the Hopf bifurcation is type II.
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to collective oscillations depending on the system parameters,
yielding different collective phase sensitivity functions. It
is known that, in weakly interacting ordinary limit-cycle
oscillators, the difference in the type of phase sensitivity
function can lead to very different synchronization dynamics
[26,27]. Therefore, the present results imply that, when we
consider populations of coupled dynamical elements undergo-
ing collective oscillations, the bifurcation of each population
leading to the collective oscillations can strongly influence the
synchronization properties.

IV. CONCLUDING REMARKS

We developed a theory of collective phase description for
globally coupled noisy active rotators where macroscopic
rhythms are generated by excitable elements. By projecting
the dynamics of the nonlinear Fokker-Planck equation onto its
stable limit-cycle orbit in the infinite-dimensional state space,
we derived a collective phase equation describing macroscopic
rhythms of the system. On the basis of our theory, we analyzed
the type of the collective phase sensitivity function near the
onset of collective oscillations. We obtained two distinct types
of the collective phase sensitivity function; they correspond to
two different bifurcation routes to collective oscillations.

The theory we developed in this paper can be consid-
ered a phase reduction method for limit-cycle solutions to
infinite-dimensional dynamical systems (see Appendix A), and
includes our previous theory for phase oscillators as a special
case (see Appendix B). Furthermore, the extension of this
approach to general systems of globally coupled dynamical
elements is briefly discussed in Appendix C.

Finally, we remark on the relation between the phase and
the breaking of continuously translational symmetry, which is
the core of the phase reduction theory [2]. The phase of the
ordinary limit-cycle solution is associated with temporal trans-
lational symmetry breaking. In Refs. [21–23], the collective
phase of the nonlinear Fokker-Planck equation of globally
coupled phase oscillators is assigned to a mixture of the
spatial and temporal translational symmetry breakings, where
the term “spatial” refers to the variable φ. The formulation
in Refs. [21–23] is also essentially the same as the phase
dynamics of wavefronts in reaction-diffusion systems [2].
However, as in the case of ordinary limit cycles, spatial
translational symmetry is not essential (although it is typically
assumed in the wavefront dynamics of reaction-diffusion
systems) for the phase description of limit-cycle solutions
in infinite-dimensional dynamical systems. In this paper, the
collective phase of the nonlinear Fokker-Planck equation is
assigned only to the temporal translational symmetry breaking.
Therefore, the formulation is applicable to nonlinear Fokker-
Planck equations describing not only phase oscillators, but
also active rotators, even though the latter case does not possess
spatial translational symmetry. A similar formulation for stable
time-periodic solutions to reaction-diffusion systems will be
presented in Ref. [34].
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APPENDIX A: CONVENTIONAL PHASE REDUCTION
OF LIMIT-CYCLE OSCILLATORS

We briefly review the conventional phase reduction method
for coupled limit-cycle oscillators [2,32,33] to make a compar-
ison to our present theory. This will clarify that the formulation
in Sec. II can be considered a phase reduction method for limit-
cycle solutions in infinite-dimensional dynamical systems.

1. Coupled limit-cycle oscillators

We consider coupled limit-cycle oscillators described by
the following model:

Ẋ
(σ )

(t) = F(X (σ )) + εp pσ (t) + εg Gστ (X (σ ),X (τ )) (A1)

for (σ,τ ) = (1,2) or (2,1), where X (σ )(t) is the d-dimensional
state of the σ th limit-cycle oscillator at time t . The first
term on the right-hand side represents the intrinsic dynamics
of the limit-cycle oscillator, the second term represents the
external forcing, and the last term represents the mutual
coupling between the oscillators. The dynamics of the isolated
limit-cycle oscillator is given by Ẋ = F(X). The external
forcing is denoted by pσ (t), the characteristic intensity of
which is given by εp � 0. The mutual coupling function is
Gστ (X (σ ),X (τ )), the characteristic intensity of which is εg � 0.

2. Limit-cycle solution and its Floquet eigenvectors

Let us assume εp = εg = 0 and focus on a single isolated
oscillator. The oscillator index σ is dropped in this section.
The limit-cycle solution to Eq. (A1) without external forcing
or mutual coupling can be described by

X(t) = X0(θ ), θ̇ (t) = ω, (A2)

where θ and ω are phase and frequency, respectively. By
inserting Eq. (A2) into (A1) with εp = εg = 0, we find that
X0(θ ) satisfies the following equation:

ω
d

dθ
X0(θ ) = F[X0(θ )]. (A3)

Let u(θ,t) represent a small disturbance to the limit-cycle
solution; let us then consider a slightly perturbed solution

X(t) = X0(θ ) + u(θ,t). (A4)

Equation (A1) with εp = εg = 0 is then linearized in u(θ,t) as

∂

∂t
u(θ,t) = L̂(θ )u(θ,t), (A5)

where the linear operator L̂(θ ) is given by

L̂(θ )u(θ ) =
[
Ĵ (θ ) − ω

∂

∂θ

]
u(θ ) (A6)

with a Jacobi matrix

Ĵ (θ ) = ∂ F[X0(θ )]

∂ X0(θ )
. (A7)

Defining the inner product as

[[u∗(θ ), u(θ )]] = 1

2π

∫ 2π

0
dθ u∗(θ ) · u(θ ), (A8)

046211-8



COLLECTIVE PHASE DESCRIPTION OF GLOBALLY . . . PHYSICAL REVIEW E 84, 046211 (2011)

we introduce an adjoint operator of L̂(θ ) by

[[u∗(θ ), L̂(θ )u(θ )]] = [[L̂∗(θ )u∗(θ ), u(θ )]]. (A9)

The adjoint operator L̂∗(θ ) is explicitly given by

L̂∗(θ )u∗(θ ) =
[
Ĵ ∗(θ ) + ω

∂

∂θ

]
u∗(θ ) (A10)

with the transposed matrix of the Jacobi matrix

Ĵ ∗(θ ) = Ĵ (θ )T. (A11)

We use the Floquet eigenvectors of the periodic linear system
Eq. (A5) and its adjoint system associated with the zero
eigenvalue, i.e.,

L̂(θ )u0(θ ) =
[
Ĵ (θ ) − ω

d

dθ

]
u0(θ ) = 0, (A12)

L̂∗(θ )u∗
0(θ ) =

[
Ĵ ∗(θ ) + ω

d

dθ

]
u∗

0(θ ) = 0. (A13)

Note that the right zero eigenvector u0(θ ) can be chosen as

u0(θ ) = d

dθ
X0(θ ), (A14)

which is confirmed by differentiating Eq. (A3) with respect to
θ . Using the inner product (A8) with the right zero eigenvector
(A14), the left zero eigenvector u∗

0(θ ) is normalized as

[[u∗
0(θ ), u0(θ )]] = 1

2π

∫ 2π

0
dθ u∗

0(θ ) · u0(θ ) = 1. (A15)

As in the infinite-dimensional case treated in the main text, the
following equation holds [32]:

d

dθ
[u∗

0(θ ) · u0(θ )]

= u∗
0(θ ) · du0(θ )

dθ
+ du∗

0(θ )

dθ
· u0(θ )

= 1

ω
[u∗

0(θ ) · Ĵ (θ )u0(θ ) − Ĵ ∗(θ )u∗
0(θ ) · u0(θ )]

= 0. (A16)

Therefore, the normalization condition is satisfied separately
for each θ as follows:

u∗
0(θ ) · u0(θ ) = 1. (A17)

The left zero eigenvector is the so-called phase sensitivity
function [2], i.e.,

u∗
0(θ ) = Z(θ ). (A18)

3. Phase reduction and the normal form

Now, we introduce the effects of weak external forcing and
mutual coupling, and treat the second and last terms in Eq. (A1)
as perturbations. By using the phase reduction method [2], we

can derive a phase equation from Eq. (A1) as follows:

θ̇ (σ )(t) = ω + εp Z(θ (σ )) · pσ (t)

+ εg Z(θ (σ )) · Gστ [X0(θ (σ )),X0(θ (τ ))]. (A19)

By applying the near-identity transformation [2,25,32], we can
obtain the following simplified phase equation:

θ̇ (σ )(t) = ω + εp Z(θ (σ )) · pσ (t) + εg�στ (θ (σ ) − θ (τ )), (A20)

where the phase coupling function is given by

�στ (θ ) = 1

2π

∫ 2π

0
dλ Z(λ + θ ) · Gστ [X0(λ + θ ),X0(λ)].

(A21)

4. Adjoint method for the left zero eigenvector

From Eq. (A13), the left zero eigenvector u∗
0(θ ) satisfies

ω
d

dθ
u∗

0(θ ) = −Ĵ ∗(θ )u∗
0(θ ), (A22)

which can be transformed into

d

ds
u∗

0(−ωs) = Ĵ ∗(−ωs)u∗
0(−ωs) (A23)

with θ = −ωs. As is well known [27,32,33], the relaxation
method using Eq. (A23) is a convenient method for obtaining
the phase sensitivity function Z(θ ) numerically.

5. Remarks on the relation to the conventional phase reduction
of ordinary limit cycles

Now, we see that the formulation in Sec. II clearly
corresponds to that in this appendix. In particular, the following
relations are important:

f0(φ,�) ↔ X0(θ ), (A24)∫ 2π

0
dφ u∗

0(φ,�)u0(φ,�) ↔ u∗
0(θ ) · u0(θ ). (A25)

Namely, the formulation in Sec. II is considered a phase
reduction of the limit-cycle solution to the infinite-dimensional
dynamical system, which is continuously parametrized by the
variable φ.

APPENDIX B: PHASE OSCILLATORS
WITH TRANSLATIONAL SYMMETRY

Here, we clarify the relation between the formulation
developed in Sec. II and our previous formulation for globally
coupled phase oscillators [21–23]. Phase oscillators can be
described as a special case of active rotators as follows:

v(φj ) → ω, (B1)

�(φj ,φk) → �(φj − φk). (B2)

In this case, the nonlinear Fokker-Planck equation (8) has
a translational symmetry with respect to φ. Reflecting this
symmetry, the collectively oscillating solution and other
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associated functions have the following properties:
f0(φ,�) = f0(φ − �,0) ≡ f0(ϕ), (B3)

u0(φ,�) = u0(φ − �,0) ≡ u0(ϕ) = − d

dϕ
f0(ϕ), (B4)

u∗
0(φ,�) = u∗

0(φ − �,0) ≡ u∗
0(ϕ), (B5)

k0(φ,�) = k0(φ − �,0) ≡ k0(ϕ) = f0(ϕ)
d

dϕ
u∗

0(ϕ). (B6)

In addition, the kernel function k0(ϕ) is normalized as

∫ 2π

0
dϕ k0(ϕ) =

∫ 2π

0
dϕ f0(ϕ)

d

dϕ
u∗

0(ϕ)

=
∫ 2π

0
dϕ u∗

0(ϕ)u0(ϕ) = 1. (B7)

FIG. 5. (Color online) Globally coupled phase oscillators (PO) corresponding to the translationally symmetric case. (a) Collectively
oscillating solution f0(φ,�). (b) Right zero eigenfunction u0(φ,�). (c) Left zero eigenfunction u∗

0(φ,�). (d) Kernel function k0(φ,�). (e)
Effective phase coupling function �(�,�′). Parameters are α = 3π/8 and D = Dc/2 = cos(α)/4.

046211-10



COLLECTIVE PHASE DESCRIPTION OF GLOBALLY . . . PHYSICAL REVIEW E 84, 046211 (2011)

The collective phase sensitivity function ζ (�) is given by

ζ (�) =
∫ 2π

0
dφ Z(φ)k0(φ − �) =

∫ 2π

0
dϕ Z(ϕ + �)k0(ϕ),

(B8)

the � dependence of which exists only when the phase
sensitivity function Z(φ) is not constant. Furthermore, the
external coupling function �στ of the phase oscillators can
be written in the following form:

�στ

(
φ

(σ )
j ,φ

(τ )
k

) → �στ

(
φ

(σ )
j − φ

(τ )
k

)
. (B9)

Again, reflecting the translational symmetry, the effective
phase coupling function �στ depends only on the collective
phase difference and coincides with the collective phase
coupling function γστ as follows:

�στ (�(σ ),�(τ )) = �στ (�(σ ) − �(τ ),0) ≡ �στ (�(σ ) − �(τ ))

= γστ (�(σ ) − �(τ )), (B10)

or, explicitly,

γστ (�(σ ) − �(τ ))

=
∫ 2π

0
dφ

∫ 2π

0
dφ′ �στ (φ − φ′)k0(φ − �(σ ))f0(φ′ − �(τ ))

=
∫ 2π

0
dϕ

∫ 2π

0
dϕ′ �στ (ϕ − ϕ′ + �(σ ) − �(τ ))k0(ϕ)f0(ϕ′).

(B11)

Here, we should note that when the external coupling function
�στ is sinusoidal, the collective phase coupling function
γστ also has a sinusoidal form. The above collective phase
sensitivity and coupling functions for the phase oscillators, i.e.,
Eqs. (B8) and (B11), are equivalent to the formulas that we
derived in Refs. [22,23]. Precisely speaking, the above system
of notation is slightly different from the previous one [21–23]
as follows:

f0(ϕ) = f̃0(ϕ), (B12)

u0(ϕ) = −ũ0(ϕ), (B13)

u∗
0(ϕ) = −ũ∗

0(ϕ), (B14)

k∗
0 (ϕ) = f0(ϕ)

d

dϕ
u∗

0(ϕ) = −f̃0(ϕ)
d

dϕ
ũ∗

0(ϕ) = k̃∗
0 (ϕ).

(B15)

Here, the previous notations of Refs. [21–23] are denoted
by f̃0(ϕ), ũ0(ϕ), ũ∗

0(ϕ), and k̃0(ϕ). These differences, which
are not essential, come from the fact that the right zero
eigenfunction was chosen as ũ0(ϕ) = df̃0(ϕ)/dϕ, in contrast
to Eq. (B4), i.e., u0(ϕ) = −df0(ϕ)/dϕ.

Let us consider the following simple model:

�(φ) = �στ (φ) = − sin (φ + α) , |α| <
π

2
. (B16)

In this case, collective oscillations exist under the condi-
tion D < Dc = cos(α)/2 [2,23]. The collectively oscillating
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FIG. 6. (Color online) Globally coupled phase oscillators (PO). (a) Collectively oscillating solution f0(ϕ). (b) Right zero eigenfunction
u0(ϕ). (c) Left zero eigenfunction u∗

0(ϕ). (d) Kernel function k0(ϕ). Parameters are α = 3π/8 and D = Dc/2 = cos(α)/4.
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solution f0(φ,�) and other associated functions, i.e., u0(φ,�),
u∗

0(φ,�), k0(φ,�), and �(�,�′), are shown in Fig. 5,
where the parameters are set to α = 3π/8 and D = Dc/2 =
cos(α)/4. All functions are translationally symmetric in sharp
contrast to Fig. 2. By using the translational symmetry,
Figs. 5(a)–5(d) can be compressed into Fig. 6, which is
essentially the same as the results in Ref. [23].

APPENDIX C: EXTENSION TO GENERAL SYSTEMS
OF GLOBALLY COUPLED ELEMENTS

The formulation in Sec. II can be straightforwardly ex-
tended to general systems of globally coupled noisy elements,
the outline of which is sketched below. We can consider
general dynamical elements such as excitable, oscillatory,
or chaotic units, as long as the system exhibits collective
oscillations described by a time-periodic solution. We consider
a group of globally coupled general dynamical elements
subjected to independent white Gaussian noise described
by

Ẋj (t) = F(Xj ) + 1

N

N∑
k=1

G(Xj ,Xk) +
√

D ξ j (t), (C1)

which can be transformed into the following nonlinear Fokker-
Planck equation:

∂

∂t
f (X,t)

= − ∂

∂ X
·
[(

F(X) +
∫

d X ′ G(X,X ′)f (X ′,t)
)

f (X,t)

]

+D

(
∂

∂ X
· ∂

∂ X

)
f (X,t). (C2)

Therefore, a collectively oscillating solution can be
described by

f (X,t) = f0(X,�), �̇(t) = �, (C3)

the right zero eigenfunction of which can be chosen as

u0(X,�) = ∂

∂�
f0(X,�), (C4)

and the left zero eigenfunction of which is normalized as∫
d X u∗

0(X,�)u0(X,�) = 1. (C5)

It is clear that collective phase description for general systems
of globally coupled noisy elements exhibiting macroscopic
rhythms can be formulated, in principle, in the same way.
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