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Nonlinear oscillators can mutually synchronize when they are driven by common external impulses. Two
important scenarios are �i� synchronization resulting from phase locking of each oscillator to regular periodic
impulses and �ii� noise-induced synchronization caused by the Poisson random impulses, but their difference
has not been fully quantified. Here, we analyze a pair of uncoupled oscillators subject to common random
impulses with gamma-distributed intervals, which can be smoothly interpolated between the regular periodic
and the random Poisson impulses. Their dynamics are characterized by phase distributions, frequency detun-
ing, Lyapunov exponents, and information-theoretic measures, which clearly reveal the differences between the
two synchronization scenarios.
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I. INTRODUCTION

Rhythmic elements are basic building blocks of nature at
human scales. They play particularly important roles in the
functioning of biological systems, such as cardiac muscle
cells, pacemaker neurons, and animals or plants following
circadian or circannual rhythms. Recently, synchronization
among noninteracting rhythmic elements induced by com-
mon fluctuating external force has attracted much attention
in diverse fields. It has been demonstrated for a wide class of
rhythmic elements ranging from lasers and electronic circuits
to biological systems �1–8�. For example, reliable synchro-
nous response of neurons due to common or shared input
signals has been actively discussed in neuroscience �9�. In
ecology, it is known that, due to common climate fluctua-
tions, populations of plants exhibit large-scale synchronized
flowering and production of seed crops also fluctuates syn-
chronously from year to year �10–12�, and such phenomena
are generally termed the “Moran effect” �13�.

We often characterize a rhythmic element as a limit-cycle
oscillator. Populations of coupled limit-cycle oscillators
show a variety of interesting collective behavior, including
mutual synchronization, wave propagation, and chaos
�14–17�. It is also well known that uncoupled limit-cycle
oscillators can mutually synchronize when they are driven by
common impulses �3,14,16–19�. The simplest classical situ-
ation is, of course, synchronization due to phase locking of
each oscillator to common periodic impulses �17�. Another
interesting situation is noise-induced synchronization as
mentioned above caused, e.g., by the common random Pois-
son impulses �3,16,18,19�. The oscillators can also synchro-
nize when the driving impulses have intermediate statistics
between the periodic and the Poisson impulses, as shown by
Yamanobe and Pakdaman �18� for a model of pacemaker
neurons driven by gamma-distributed impulses.

This prompts the question: what is the difference between
the synchronization due to phase locking and noise-induced

synchronization? Though drive-response configuration of the
impulse source and the oscillators is the same for both cases,
it is expected that there should be some difference in their
synchronization dynamics, reflecting different characteristics
of the driving impulses. In this paper, we address this issue
by considering uncoupled limit-cycle oscillators driven by
gamma impulses, which can be smoothly interpolated be-
tween the regular periodic and the random Poisson impulses.
We examine the transition from phase locking to noise-
induced synchronization as the statistics of the gamma im-
pulses is varied and quantify their difference using phase
distributions, Lyapunov exponents, and information-theoretic
measures.

The effect of common gamma impulses on limit-cycle
oscillators was previously treated in the paper of Yamanobe
and Pakdaman �18�, but its main focus was not on the tran-
sition between the two types of synchronization but rather on
physiologically realistic characterization of pacemaker neu-
rons. We here conduct a systematic quantitative analysis of
the transition between the two different synchronization dy-
namics. We will reveal that the two types of synchronization
dynamics are clearly different in many aspects, e.g., their
stability, fluctuations, and statistical dependence on the driv-
ing impulses.

This paper is organized as follows. In Sec. II, we intro-
duce a model of uncoupled oscillators subject to common
gamma impulses and demonstrate its synchronization dy-
namics for different types of driving impulses. In Sec. III, we
analyze phase distributions of the oscillators using the
Frobenius-Perron-type equations. In Sec. IV, we focus on
frequency detuning of the oscillators due to impulsive driv-
ing. In Sec. V, we examine the Lyapunov exponents and their
fluctuations in the synchronized states. In Sec. VI, we char-
acterize mutual relationships among the impulse source and
the driven oscillators by utilizing information-theoretic mea-
sures. Section VII summarizes the results.
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II. LIMIT-CYCLE OSCILLATORS DRIVEN
BY GAMMA IMPULSES

In this section, we introduce phase oscillators driven by
common gamma impulses and demonstrate their synchroni-
zation dynamics.

A. Random phase map

Based on the standard phase reduction theory of limit
cycles �3,14–16,19�, we can describe a limit-cycle oscillator
using only its phase variable, �� �0,1�, defined along its
stable limit cycle provided that the intervals between the
impulses are sufficiently longer than the amplitude relaxation
time of the oscillator state to the limit-cycle orbit. The key
quantity for this description is the phase response curve
�PRC� G��� of the oscillator �14�, which encapsulates its
dynamical properties. G��� is a periodic function on �0,1�
that gives asymptotic response of the oscillator phase to an
impulsive perturbation given at phase �. It has been mea-
sured experimentally, e.g., for repetitively firing neurons
�20,21�. When the limit-cycle oscillator is kicked by an im-
pulse at phase �, the phase is mapped to a new value F���
=�+G���. This function F��� is sometimes called the
“phase-transition curve” in the literature.

The dynamics of the oscillator between two successive
impulses consists of a jump caused by the first impulse and
subsequent free rotation until the arrival of the second im-
pulse �3,19,22�. The oscillator is also subject to small tem-
poral fluctuations of various origins. We assume that each
oscillator receives common driving impulses at times
�t1 , t2 , . . . , tn , . . .� and denote the phase of the oscillator just
before the nth impulse by �n� �0,1�. The effect of the nth
impulse is to map the oscillator phase �n to F��n�. To incor-
porate the effect of small fluctuations, we also apply a weak
additive independent noise �n before the mapping. The phase
�n just after the nth impulse is thus given by �n=F��n
+�n�. After receiving the nth impulse, the oscillator rotates
with a constant frequency until tn+1 at which the �n+1�th
impulse arrives. Therefore, the phase �n+1 just before the
�n+1�th impulse is given by

�n+1 = F��n + �n� + ��n mod 1, �1�

where �n= tn+1− tn is the interimpulse interval, � is the fre-
quency of the oscillator, and we have taken modulo 1 of the
phase to confine it in �0,1�. Since �n and �n are random
variables, this equation gives a random map, which we will
call a “random-phase map” hereafter. When we consider
multiple oscillators, �n is common to all oscillators, whereas
�n is different from oscillator to oscillator. Note that �n rep-
resents small temporal fluctuations of the dynamics of oscil-
lators but not static heterogeneities in their natural frequen-
cies. Mean frequency of the driven oscillator exhibits
qualitatively different dependences on the driving impulse
between phase locking and noise-induced synchronization,
as we show in Sec. IV.

As the simplest and typical example, we assume that the
PRC is given by a sinusoidal function G���=c sin�2��� in
the following numerical analysis, so that the phase map is
given by

F��� = � + c sin�2��� . �2�

The parameter c controls the magnitude of the nonlinearity,
which may also be regarded as the intensity of the impulse.
Such a PRC with both positive and negative lobes is called
type II �8,23–25�, which generally arises near the Hopf bi-
furcation of limit-cycle oscillators �3,23–27�. Another typical
example is the type-I PRC with a single positive lobe, e.g.,
G���=c�1−cos�2����, which generally arises near the
saddle-node on invariant circle bifurcation of oscillators
�8,25,26,28�. However, difference between these two PRCs
can roughly be eliminated by simply shifting the frequency �
and the origin of the phase � in the present setup, and quali-
tatively similar results are expected for both PRCs. Actually,
the two types of PRCs yielded almost the same results in our
numerical analysis. Thus, the type-II PRC �Eq. �2�� gives us
general insights and we only present the results for this case
hereafter.

B. Gamma impulses

We consider driving impulses that have “intermediate”
statistics between the regular periodic impulses and the ran-
dom Poisson impulses. As such impulses, we adopt the
gamma impulses �18�, whose interimpulse interval � obeys
the gamma distribution �18,29�,

W��;a,b� = �a−1 e−�/b

��a�ba , �3�

where a and b are real positive parameters. The mean inter-
val is given by ���=	0

�W�� ;a ,b��d�=ab. The gamma distri-
bution has the following properties. First, when a=1,
W�� ;a ,b� gives an exponential distribution,

W��;a = 1,b� =
e−�/b

b
, �4�

which means that the impulses obey the standard Poisson
random process. Second, by taking the limit a→� and b
→0 with ���=ab fixed, the gamma distribution approaches
the delta function,

W��;a,b� →
a→�,b→0

	�� − ���� . �5�

In this limit, the interimpulse interval is always ���, so that
the impulses become periodic.

Thus, the parameter a, which we call a shape parameter,
determines the property of the gamma impulses as shown in
Fig. 1. By varying the value of a between 1 and � with
���=ab fixed, the gamma impulses can exhibit intermediate
properties between the random Poisson and the regular peri-
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FIG. 1. �Color online� The gamma distribution W�� ;a ,b� for �a�
a=1, b=1, �b� a=30, b=1 /30, and �c� a=1000, b=1 /1000. The
mean value is fixed at ���=ab=1.
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odic impulses while keeping the same mean interimpulse
interval. We examine uncoupled oscillators driven by gamma
impulses and see how synchronization dynamics of the os-
cillators depends on the shape parameter a in the following.

The gamma distribution has several nice mathematical
properties and naturally arises under a few simple assump-
tions when the mean and the irregularity of impulse se-
quences, which correspond to the mean interval ��� and the
shape parameter a �29�, respectively, are given. We thus use
the gamma impulses in the present paper, though alternative
approaches for varying the regularity of the driving signal
should also be possible, e.g., by using chaotic dynamical
systems �30�.

C. Synchronization by common driving impulses

We here demonstrate synchronization of uncoupled oscil-
lators induced by common impulses for the periodic, Pois-
son, and intermediate cases by direct numerical simulations.
We fix the magnitude of nonlinearity �or the intensity of
impulses� in Eq. �2� at c=0.1 throughout our numerical
simulations, which is sufficiently small and therefore the
map is not chaotic even for strictly periodic impulses. This is
because we are focusing on the synchronization dynamics of
limit cycles �note that the sinusoidal type-II phase map with
periodic impulses is nothing but the well-known circle map
�16��. The strong Poisson impulses may also yield positive
Lyapunov exponents and lead to desynchronization of oscil-
lators as shown in Ref. �3�, but we do not consider such a
situation in the present paper.

Figure 2 shows typical synchronization dynamics of un-
coupled oscillators induced by three types of common im-
pulses, where zero-crossing points of ten oscillators are
shown in raster plots. The mean interval of the impulses is
set at ���=ab=1. The period of the oscillator is also taken as
T=1 /�=1 and is thus equal to the mean interval.

�i� Phase locking to periodic impulses �Fig. 2�a��. If the
impulses are periodic and their intervals are nearly equal to
�or more generally rational multiples of� the intrinsic rotation
period of the oscillators, namely, if they are resonant, each
oscillator becomes phase locked to the impulses. As a con-
sequence, uncoupled oscillators driven by common periodic
impulses synchronize with each other.

�ii� Noise-induced synchronization by the Poisson im-
pulses �Fig. 2�b��. The oscillators also synchronize when
they are driven by the common Poisson impulses of appro-
priate intensity. It has been theoretically and experimentally
shown that uncoupled limit-cycle oscillators subject to the
weak common Poisson impulses generally synchronize with
each other, irrespective of their details �3,16,19�.

�iii� Synchronization induced by gamma impulses �Fig.
2�c��. Uncoupled oscillators subject to the gamma impulses
with intermediate statistics between the periodic and Poisson
impulses can also synchronize mutually �18�.

Thus, the uncoupled oscillators synchronized with each
other by the effect of the common impulses for all values of
the shape parameter. It is however not easy to catch the quan-
titative differences in their synchronization dynamics just
from these figures. In the following sections, we will char-

acterize the differences for varying types of common im-
pulses using phase distributions, frequency detuning,
Lyapunov exponents, and information-theoretic measures.

III. PHASE DISTRIBUTIONS

In this section, we introduce the Frobenius-Perron-type
equations �19,31,32� that describe evolution of phase distri-
butions. Using them, we examine how the relations among
the oscillator phases and the interimpulse intervals depend
on the shape parameter, which reveal differences between
phase locking and noise-induced synchronization.

A. Single-oscillator Frobenius-Perron equation

Let us consider a single-oscillator probability density
function �PDF� Pn��� of the phase �n at time step n, just
before the nth impulse arrives. To obtain a Frobenius-Perron
equation describing the dynamics of Pn���, it is convenient

to consider a PDF Pn��̄� of the “unwrapped” phase �̄n de-
fined in �−� ,��, which obeys the following random-phase
map without the modulo 1,

�̄n+1 = F��n + �n� + ��n. �6�

The PDF Pn+1��̄� of �̄n+1 is given by the following
Frobenius-Perron equation �32,33�:
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FIG. 2. Synchronization of uncoupled oscillators induced by
common impulses. Rasters show zero-crossing events of individual
oscillators. Each arrow shows the time when an impulse arrives. �a�
Phase locking �a=1000�. �b� Noise-induced synchronization �a
=1�. �c� Synchronization induced by gamma impulses �a=30�.
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Pn+1��̄� = 

0

1

d�

0

�

d�

−�

�

d�Pn���W���R���


	��̄ − F�� + �� − ��� , �7�

where W��� is the PDF of the interimpulse intervals, namely,
the gamma distribution given in Eq. �3�, and

R��� =
1

�2��2
exp�−

�2

2�2
 �8�

is the probability density function of the independent addi-
tive noise, which we assume to be zero-mean Gaussian of
variance �2. The probability density function of the wrapped

phase, �= �̄ mod 1� �0,1�, can be calculated as �34�

Pn��� = �
k=−�

�

Pn��̄ + k� . �9�

Thus, from Eq. �7�, the Frobenius-Perron equation describing
Pn��� is obtained as

Pn+1��� = �
k=−�

� 

0

1

d�

0

�

d�

−�

�

d�Pn���W���R���


	�� − F�� + �� − �� − k� , �10�

which describes the single-oscillator PDF Pn��� of the phase
�n just before the nth impulse.

Stationary solutions in Eq. �10� give the PDF of the os-
cillator phase driven by gamma impulses and additive noise
in statistically steady states. In Ref. �19�, we have treated a
similar Frobenius-Perron equation perturbatively to obtain
the stationary phase PDF of the oscillator under weak Pois-
son impulses and calculated the Lyapunov exponents. In Ref.
�31�, Doi et al. analyzed the spectral properties of a similar
Frobenius-Perron equation �driven by periodic impulses� to
characterize noisy phase locking of a limit-cycle oscillator.

B. Two-oscillator Frobenius-Perron equation

To investigate phase relationships between a pair of oscil-
lators �denoted here as A and B� subject to common im-
pulses, we introduce a joint PDF Pn��A ,�B� of their phases
�n

A and �n
B just before the nth impulse. The dynamics of the

pair is given by

�n+1
A = F��n

A + �n
A� + ��n mod 1,

�n+1
B = F��n

B + �n
B� + ��n mod 1, �11�

where �n
A and �n

B are independent additive noise terms ��n is
common to both oscillators�. Similarly to the single-
oscillator case, we can derive a Frobenius-Perron equation
describing the two-oscillator phase PDF Pn��A ,�B� as

Pn+1��A,�B� = �
kA=−�

�

�
kB=−�

� 

0

1

d�A�

0

1

d�B�

0

�

d�




−�

�

d�A�

−�

�

d�B�Pn��A�,�B��W���


 R��A��R��B��


	��A − F��A� + �A�� − �� − kA�


	��B − F��B� + �B�� − �� − kB� . �12�

The stationary solution in Eq. �12� gives a PDF of the pair of
oscillator phases driven by common impulses and indepen-
dent additive noise in the statistically steady state.

In Ref. �22�, we have analyzed a similar two-oscillator
Frobenius-Perron equation by averaging out the fast dynam-
ics of the mean phase to obtain an approximate Frobenius-
Perron equation describing only the phase difference of two
oscillators driven by common Poisson impulses. Since we
are interested in pair phase distributions, not only in the dis-
tribution of phase differences, we directly solve Eq. �12� nu-
merically for gamma impulses in the following.

C. Numerical results

We here present stationary phase PDFs obtained by nu-
merically solving the Frobenius-Perron equations. We set the
frequency of each oscillator at �=1. The period of the oscil-
lator is T=1 /�=1 and is equal to the mean period of im-
pulses ���=1. Thus, when the shape parameter a is suffi-
ciently large and the impulses are nearly periodic, phase
locking should occur. In the numerical analysis, each vari-
able is discretized using 100–200 grid points. The calculation
cost can be drastically reduced by devising numerical algo-
rithms that use Fourier representation in calculating convo-
lutions of the Frobenius-Perron equations �see the Appendix
for details�.

1. Single-oscillator phase distributions

Figures 3�a�–3�c� show the stationary PDF P��� of a
single-oscillator phase � just before each impulse for nearly
periodic �a=1000�, intermediate �a=30�, and Poisson
�a=1� cases. Numerical solutions of the Frobenius-Perron
equation �Eq. �10�� and the results of direct numerical simu-
lations of random-phase map �1� agree nicely. The intensity
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FIG. 3. �Color online� Stationary single-oscillator probability
density function P��� of the phase � just before the arrival of each
impulse. Solid curves are obtained by numerically solving the
Frobenius-Perron equation and squares are the results of direct nu-
merical simulations of the random-phase map. �a� Noise-induced
synchronization �a=1�. �b� Synchronization induced by gamma im-
pulses �a=30�. �c� Phase locking �a=1000�.
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of the weak independent Gaussian noise is �=0.01. In all
cases, the oscillators synchronize with each other �to the in-
dependent noise level�. However, depending on the shape
parameter a, the phase PDF P��� significantly differs. For
nearly periodic impulses, P��� has a sharp peak, indicating
that the oscillator phase is actually entrained to the driving
impulse with some fixed phase shift. In contrast, P��� is
roughly uniformly distributed for Poisson impulses, which
means that the relationship between the oscillator phase and
the impulse timing is not fixed and hence not entrained. In
the intermediate case, P��� has a broad but still clear one-
humped shape, implying that the phase is not completely
entrained to the impulses but still possesses a certain level of
coherence with respect to the driving impulses.

2. Two-oscillator phase distributions

Figures 4�a�–4�c� show the stationary joint phase PDF
P��A ,�B� of a pair of oscillators for nearly periodic �a
=1000�, intermediate �a=30�, and Poisson �a=1� impulses
obtained by numerically solving the Frobenius-Perron equa-
tion �Eq. �12��. In all cases, the oscillators synchronize with
each other, so that their phases are distributed along the di-
agonal line, �A=�B. However, their distribution strongly de-
pends on the shape parameter a. For nearly periodic impulses
�a=1000�, the oscillator is almost phase locked to the im-
pulses and thus the PDF has a sharp peak near the center,
indicating that the oscillators are not only mutually synchro-
nized but both of them are entrained to the impulses. As the
parameter a decreases, the distribution becomes broader, and
for Poisson impulses �a=1�, the phases �A and �B are
broadly distributed along the diagonal line, indicating that
they are synchronized but not entrained by the impulses any-
more.

3. Joint distributions of the interimpulse intervals
and the oscillator phases

To analyze how the driving impulses affect the oscillator
phase, we also calculate the joint PDF of the interimpulse
interval and the oscillator phase just after this interval in the
statistically steady states. The stationary joint PDFs P�� ,��
= P�� ���W��� of the impulse interval � and the phase � ob-
served immediately after this interval are calculated from the
Frobenius-Perron equation. Figures 5�a�–5�c� show station-
ary joint PDFs P�� ,�� for nearly periodic �a=1000�, inter-
mediate �a=30�, and Poisson �a=1� cases. The distribution

has a sharp peak in the nearly phase-locked case �a=1000�,
indicating that the interimpulse interval and the oscillator
phase just after this interval have almost a one-to-one corre-
spondence, namely, the oscillator phase is almost entrained
by the impulses. As we decrease the shape parameter a, the
distribution gradually elongates, and in the Poisson limit
�a=1�, such clear correspondence is lost �but they still retain
a certain degree of correlation�.

Thus, all phase distributions clearly capture the essential
difference between the phase locking and the noise-induced
synchronization. The relation among the oscillator phases
and the interimpulse intervals significantly differs depending
on the shape parameter a, even though the oscillators them-
selves are always mutually synchronized. As a is increased,
the oscillators tend to be more strictly phase locked to the
driving impulses, whereas for smaller a, their dependence
becomes weaker. This observation will be quantified by
information-theoretic measures in Sec. VI.

IV. FREQUENCY DETUNING

In this section, we consider how the dynamics of the os-
cillator is modulated by the driving impulses. Specifically,
we examine the frequency detuning �16�, i.e., the difference
between the mean frequency of the driven oscillator and that
of the driving impulses, for varying values of the shape pa-
rameter. This analysis will reveal another clear difference
between the two types of synchronization scenarios.

A. Mean frequency of the driven oscillator

From the phase PDF P��� and the PRC G���, we can
estimate the mean frequency of the impulse-driven oscillator
as follows. Using the random-phase map for unwrapped

phase �̄n �Eq. �6��, the oscillator phase just before the Nth
impulse is given by

�̄N = �̄1 + �
i=1

N−1

�G��̄i + �i� + ��i� . �13�

Therefore, long-time mean frequency �� of the driven oscil-
lator can be calculated from this equation as
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the impulses. �a� Noise induces synchronization �a=1�. �b� Syn-
chronization induced by intermediate impulses �a=30�. �c� Phase
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�� = lim
N→�

�̄N − �̄1

N − 1

= lim
N→�

� 1

N − 1 �
i=1

N−1

G��̄i + �i� +
1

N − 1 �
i=1

N−1

��i

= 


0

1

d�P���G��� + �

0

�

d�W���

= 

0

1

d�P���G��� + � , �14�

where we have replaced the long-time average by a statistical
average and used the periodicity of the PRC G��� and the
normalization condition 	0

�d�W���=1. Thus, the mean fre-
quency detuning between the oscillator and the impulses is
given by

�� − � = 

0

1

d�P���G��� + � − � , �15�

where �=1 / ��� is the mean frequency of the driving im-
pulses.

B. Numerical results

We fix the mean frequency of the driving impulses at �
=1 / ���=1 and vary the shape parameter a and the natural
frequency � of the oscillator in the numerical simulations.
Figure 6�a� plots the frequency detuning ��−� on the �a ,��
plane. For large a and nearly resonant natural frequency, �
��=1, the conditions for phase locking are satisfied and
therefore the mean frequency �� of the oscillator is locked to

that of the driving impulses �, yielding a plateau in the
figure. In contrast, for small a, the mean frequency �� never
locks to �.

Figure 6�b� plots ��−� as a function of � at a=1000,
i.e., for approximately periodic impulses. Results of direct
numerical simulations agree well with the theoretical esti-
mate �Eq. �15��, with the PDF P��� obtained numerically
from the Frobenius-Perron equation. A plateau satisfying
��=� can clearly be seen near �=�. In the intermediate
case �a=30� shown in Fig. 6�c�, clear phase-locking region
no longer exists, however, the frequency of the oscillator is
modulated by the driving impulses. In the Poisson case
�a=1�, the mean frequency of the driven oscillator is not
affected by the driving impulse as shown in Fig. 6�d�.

This observation provides us with further evidence on the
difference between the two synchronization scenarios. Actu-
ally, as pointed out by Yoshimura et al. in Ref. �35�, the
absence of frequency locking between the oscillators is char-
acteristic to common-noise-induced synchronization, in
sharp contrast to ordinary phase locking due to mutual cou-
pling �though they considered weak Gaussian noise instead
of random impulses in their work�.

V. STABILITY OF SYNCHRONIZED STATES

In this section, to characterize the synchronization dynam-
ics, we focus on the Lyapunov exponents and their fluctua-
tions in the synchronized states. As we will see, differences
between synchronization scenarios are well characterized by
the fluctuations of the Lyapunov exponent.

A. Lyapunov exponents and its variance

To quantify statistical linear stability of the synchronized
states, we calculate the Lyapunov exponent and its variance.
Let us consider a pair of oscillators and denote their phases
at time n as �n and �n�, respectively. Linearized evolution of a
small phase difference 
n=�n�−�n is given by


n+1 = F���n + �n�
n, �16�

where F����=dF��� /d� is the instantaneous linear growth
rate of the phase difference. The deviation 
N at large time
step N is thus given by

�
N


0
� = �

n=0

N−1

�F���n + �n�� � exp�N���� , �17�

where we have introduced the Lyapunov exponent ���, de-
fined by a long-time average of the linear growth rates as

��� = lim
N→�

1

N
ln�
N


0
�

= lim
N→�

1

N �
n=0

N−1

ln�F���n + �n��

= 

0

1

d�

−�

�

d�P���R���ln�F��� + ��� . �18�

In the last expression, we have replaced the long-time aver-

0.8 1 1.2
100

102
−0.2

0

0.2

ωa

ω
−
Ω

’
(a)

0.8 1 1.2
−0.3
−0.2
−0.1

0
0.1
0.2
0.3

ω

(c)

ω
−
Ω

’

0.8 1 1.2
−0.3
−0.2
−0.1

0
0.1
0.2
0.3

ω

(d)

ω
−
Ω

’

0.8 1 1.2
−0.3
−0.2
−0.1

0
0.1
0.2
0.3

ω

(b)

ω
−
Ω

’

theory
RPM
ω Ω = ω’−

theory
RPM
ω Ω = ω’−

theory
RPM
ω Ω = ω’−
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age by a statistical average over the stationary phase PDF
P��� and the PDF R��� of the independent noise. The syn-
chronized state is stable if ��� is negative.

Similarly, variance of the linear growth rates, var���
= ��2�− ���2, can be calculated as

var��� = 

0

1

d�

−�

�

d�P���R����ln�F��� + ����2

− �

0

1

d�

−�

�

d�P���R���ln�F��� + ����2

.

�19�

As we will see, even if the Lyapunov exponent ��� takes the
same value, the variance var��� can significantly differ de-
pending on the shape parameter a.

B. Numerical results

Figure 7�a� plots the Lyapunov exponent ��� on the �a ,��
plane, showing its dependence on the shape parameter a and
on the natural frequency of the oscillator �. The mean period
of the impulses is fixed at ���=1. For sufficiently large a,
there exists bell-shaped regions near the resonant frequencies
�i.e., �=1 and �=2�, where the Lyapunov exponent takes
large negative values. These regions correspond to nearly
phase-locked states and may be seen as a kind of Arnold’s
tongues. The Lyapunov exponent also takes small negative
values outside this region, which corresponds to the noise-
induced synchronized states. Note that phase locking occurs
only when the oscillator frequency is approximately resonant
to the impulses, whereas the noise-induced synchronization
occurs almost everywhere.

Dependence of the Lyapunov exponent ��� on the shape
parameter a for several values of � is plotted in Fig. 8�a�.

When the natural frequency is resonant to the mean interim-
pulse interval ��=�=1 / ���=1�, ��� smoothly decreases as
we move from the noise-induced synchronization �a=1� to
the phase locking �a=1000�, indicating that the phase lock-
ing is more stable than the noise-induced synchronization.
However, for oscillator frequencies near the edges of the
phase-locking region ��=0.91 and 1.09�, ��� differs only
little between a=1 and a=1000, so that the noise-induced
synchronization can be nearly stable as the phase locking.
Thus, though the Lyapunov exponent ��� reflects the syn-
chronization dynamics, difference between the two types of
synchronization cannot be fully characterized just by looking
at ���.

Figure 7�b� shows dependence of the variance of the
Lyapunov exponent var��� on the shape parameter a and on
the oscillator frequency �, and Fig. 8�b� shows the depen-
dence on the shape parameter a for �=0.91, 1, and 1.09. In
contrast to the Lyapunov exponent itself, the variance var���
always decreases considerably as a is increased from the
noise-induced synchronization �a=1� to the phase locking
�a=1000� because the phase PDF becomes much broader for
smaller a as we have seen in Fig. 3. Thus, the difference
between the phase locking and the noise-induced synchroni-
zation can be captured more clearly by the fluctuations in the
Lyapunov exponent rather than by its long-time average.

The difference can also be clearly visualized by plotting
the ratio of the Lyapunov exponent and its variance
��� /var��� as in Figs. 7�c� and 8�c�. Actually, this ratio char-
acterizes the intermittent dynamics of the phase differences
between the oscillators as we explain below.

C. Intermittent dynamics of phase differences

Fluctuations of the Lyapunov exponent manifest itself in
the dynamics of the phase difference. In Fig. 9, typical time
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sequences of the phase difference 
n between the two oscil-
lators in the synchronized states are shown. Three different
shape parameters �a=1,30,1000� yielding nearly the same
Lyapunov exponent ��� are chosen �with �=0.91 fixed�. In
noise-induced synchronization �Fig. 9�a�� with small a, the
phase difference often exhibits big bursts because the growth
rate fluctuates strongly �large var����. As the parameter a
increases, variation of the phase difference becomes smaller
�Fig. 9�b�� and, in the phase-locked state, the phase differ-
ence stays small and rarely exhibits large bursts �Fig. 9�c��
because fluctuations of � are very weak �small var����. The
peculiar dynamics shown in Fig. 9�a� is a direct consequence
of the fluctuations of the linear growth rates and intimately
related to the well-known on-off �or modulational� intermit-
tency �16,36,37�.

Figure 10 shows the stationary PDFs of phase differences
between the oscillators for differing values of the shape pa-
rameter a in normal scales �a� and in log-log scales �b�. Re-
flecting the degree of the fluctuations of �, the width of the
PDFs varies widely. The tail part of the distribution exhibits
power-law decay, which is broader for smaller a, indicating
that the phase differences exhibit big bursts �phase differ-
ences� much more frequently. As shown in Refs. �16,36–38�,
the exponent of the power-law tail is approximately given by
the ratio ��� /var��� that we plotted in Fig. 7�c�. Thus, de-
gree of intermittency in the synchronized dynamics also
characterizes the difference in noise-induced synchronization
and phase locking clearly.

VI. INFORMATION ANALYSIS

We have observed that the joint PDFs of the oscillator
phases and the impulse intervals exhibit distinct characteris-
tics depending on the shape parameter. In this section, to
quantify correlations between the oscillator phases and the
impulse intervals for different types of synchronization dy-
namics, we introduce information measures. In particular, we
focus on the mutual dependence or “causality” of a pair of
phase oscillators driven by a common impulse source. This
leads us to physically distinct interpretations of the two syn-
chronization scenarios.

A. Information measures

1. Mutual information

The mutual information J�X ;Y� �39� is a nonnegative
measure that quantifies mutual dependence of two random
variables, X and Y �39�. It is defined as

J�X;Y� = �
x�X,y�Y

p�x,y�ln
p�x,y�

p�x�p�y�
, �20�

where p�x ,y� is a joint probability distribution of X and Y
and p�x� and p�y� are probability distributions of X and Y,
respectively. We often normalize J�X ,Y� by its upper limit as

j�X;Y� =
J�X;Y�

min�H�X�,H�Y��
, �21�

where H�X� and H�Y� are entropies of X and Y, respectively.
The normalized mutual information satisfies 0� j�X ;Y��1.
Assuming, for example, that X represents the interimpulse
interval � and Y the oscillator phase � just after this interval,
J�X ;Y� or j�X ;Y�, quantifies how much the oscillator phase
tells us about the impulses.

2. Interaction information

The interaction information I�X ;Y ;Z� �40,41� is a gener-
alization of the mutual information J�X ;Y� to three random
variables X, Y, and Z and quantifies mutual dependence
among them. It is defined as

I�X;Y ;Z� = �
x�X,y�Y

p�x,y�ln
p�x,y�

p�x�p�y�

− �
x�X,y�Y,z�Z

p�x,y,z�ln
p�x,y,z�p�z�
p�x,z�p�y,z�

, �22�

where p�x ,y ,z� is a joint probability distribution function of
X, Y, and Z. I�X ;Y ;Z� is symmetric with respect to permu-
tations of X, Y, and Z. The first term is simply the mutual
information J�X ;Y� between X and Y and the second term on
the right-hand side gives conditional mutual information
J�X ;Y �Z� between X and Y given Z. Thus, I�X ;Y ;Z� can be
expressed as

I�X;Y ;Z� = J�X;Y� − J�X;Y�Z� , �23�

which provides us with some intuitive meaning of I�X ;Y ;Z�.
Namely, it measures the effect of knowing Z in guessing the
mutual dependence of X and Y.

Unlike J�X ;Y�, I�X ;Y ;Z� can take both positive and nega-
tive values. The sign of I�X ;Y ;Z� tells us about how the
three random variables X, Y, and Z depend on each other, as
illustrated in Fig. 11.

�i� If I�X ;Y ;Z�=0, at least one of the three random vari-
ables is independent of the others. For example, knowing Z
has no effect in guessing the mutual information between X
and Y, J�X ;Y �Z�=J�X ;Y�. All variables are mutually depen-
dent if I�X ;Y ;Z��0.
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P��A−�B� of the phase difference �A−�B of two oscillator calcu-
lated by direct numerical simulations of the random-phase map.
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and 1000, respectively. �a� P��A−�B�. �b� P��A−�B� using logarith-
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�ii� If I�X ;Y ;Z��0, one of the three variables tends to
determine the other two variables. For example, knowing Z
lowers the information on X gained by observing Y �or vice
versa�, i.e., J�X ;Y �Z��J�X ;Y�. In particular, the maximum
value of I�X ;Y ;Z�, given by min�H�X� ,H�Y� ,H�Z��, is at-
tained when one of the three variables dominates the other
two, for example, as X=hX�Z� and Y =hY�Z� where hX and hY
are some maps.

�iii� if I�X ;Y ;Z��0, knowing, e.g., Z helps in gaining
information on X by observing Y, so that J�X ;Y �Z�
�J�X ;Y�. In particular, I�X ;Y ;Z� takes its maximum value
when two of the random variables dominate the remaining
one, for example, when Z=h�X ,Y� with some map h and
moreover J�Y ;Z�=0 �Y and Z are independent�. The maxi-
mum value is equal to the negative conditional entropy
−H�Z �X� of the dominated variable Z given the dominating
variable X.

We normalize the interaction information I�X ;Y ;Z� by its
maximum as

i�X;Y ;Z� =
I�X;Y ;Z�

min�H�X�,H�Y�,H�Z��
, �24�

so that 0� i�X ;Y ;Z��1 is satisfied. In addition to the above
normalization, I�X ;Y ;Z� may also be normalized by the mu-
tual information J�X ;Y� as

i��X;Y ;Z� =
I�X;Y ;Z�
J�X;Y�

= 1 −
J�X;Y�Z�
J�X;Y�

. �25�

The quantity i��X ;Y ;Z� satisfies 0� i��X ;Y ;Z��1 �because
I�X ;Y ;Z��0 in the present case as shown below� and quan-
tifies how much information Z conveys about the relation-
ship between X and Y. We use these normalized i�X ;Y ;Z�
and i��X ;Y ;Z� to quantify mutual dependence among �, �1,
and �2.

B. Numerical results

The mutual information and the interaction information
are calculated from the PDFs obtained by numerically solv-
ing the Frobenius-Perron equations �Eqs. �10� and �12��. We
discretize the interimpulse intervals and the two-oscillator
phases using 100 grid points and use the resulting coarse-
grained discrete probability distributions in the calculation.
Note that we need the joint probability distribution
p��A ,�B ,�� to calculate the interaction information, which
corresponds to 1003 grid points. Such a calculation is only
feasible by the Frobenius-Perron approach.

1. Mutual information J(� ;�)

Figure 12�a� shows the mutual information J�� ;�� of the
interimpulse interval � and the phase � just after this interval,
as well as its upper limit H��� �entropy of the interimpulse
intervals� as functions of the shape parameter a for the reso-
nant situation, T=1 /�= ���=1. H��� takes its maximum
value in the Poisson limit �a=1�, monotonously decreases as
the shape parameter a is increased, and almost vanishes for
nearly periodic impulses �a=105�. The raw mutual informa-
tion J�� ;�� takes a small value for Poisson impulses �a=1�

and gradually increases with the shape parameter a. J�� ;��
takes its maximum value at a=aM�1000, then decreases
again, and almost vanishes when the impulses become nearly
periodic �a=105�.

Figure 12�b� shows the normalized mutual information
j�� ;��=J�� ;�� /H���. It increases smoothly from a small
value �nearly 0� to 1 as the shape parameter a is increased
from a=1 �Poisson� to a=105 �nearly periodic�. This indi-
cates that the oscillator phase has only little dependence on
the interimpulse interval just before it is measured in the
Poisson case, whereas the oscillator phase possesses almost
complete information about the interval in the periodic case.
These results are consistent with the shape of the single-
oscillator phase PDF shown in Fig. 3.

It is interesting to note that the raw mutual information
J�� ;�� has a peak at the intermediate shape parameter aM. If
we regard our model as an information channel, the output
oscillator phase conveys information about the input impulse
interval most efficiently at this value. This can be interpreted
as follows. For periodic impulses, even though � is locked to
�, the interval � has no information because H���=0 and
therefore J�� ;��=0. For the Poisson impulses, though H���
is relatively large, � does not faithfully represent �. As a
compromise, J�� ;�� is maximized at the intermediate value
of a.

2. Interaction information I(� ;�A ;�B)

More interesting insight can be attained by examining the
interaction information I�� ;�A ;�B� among the interimpulse
interval and the phases of the two driven oscillators. Figure
13�a� shows the interaction information I�� ;�A ;�B�, its upper
limit H���, and mutual informations J��A ;�B� and J�� ;�A� as
functions of the shape parameter a for �=1 �resonant�. The
intermediate peak of the raw interaction information
arises due to the same reason as in the previous case of
the raw mutual information. Interaction informations normal-
ized in three ways, i1�� ;�A ;�B�= I�� ;�A ;�B� /H���,
i2�� ;�A ;�B�= I�� ;�A ;�B� /J��A ;�B�, and i3�� ;�A ;�B�
= I�� ;�A ;�B� /J�� ;�A�, are plotted against a in Fig. 13�b�.

The normalized interaction information i1�� ;�A ;�B� de-
creases as the shape parameter is decreased from a=50 000
�nearly periodic� to a=1 �Poisson�. For nearly periodic im-
pulses, i1�� ;�A ;�B� is nearly 1, implying that �, �A, and �B

are significantly dependent on each other in the phase-
locking regime. As a is decreased, i1�� ;�A ;�B� gradually de-
creases and, for Poisson impulses, i1�� ;�A ;�B� almost van-
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FIG. 12. �Color online� �a� The mutual information J�� ;��
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ishes, indicating that at least one of the �A, �B, and � is
almost independent of the others.

The normalized interaction information i2�� ;�A ;�B� also
decreases as the shape parameter is decreased from a
=50 000 �nearly periodic� to a=1 �Poisson�. For nearly pe-
riodic impulses �a=50 000�, i2�� ;�A ;�B� is nearly 1, which
implies that the interimpulse interval � dominates the oscil-
lator phases �A and �B. As a is decreased, i2�� ;�A ;�B� de-
creases gradually, and for Poisson impulses, it becomes very
close to 0, namely, � is almost independent of �A and �B and
thus � tells very little about �A and �B.

The last normalized interaction information i3�� ;�A ;�B�
also decreases as the shape parameter is decreased from a
=50 000 �nearly periodic� to a=1 �Poisson�. For nearly pe-
riodic impulses �a=50 000�, i3�� ;�A ;�B� is nearly 1, which
indicates that the phase �B has almost complete information
about � and �A. It means that all �, �A, and �B depend on each
other strongly. Unlike i2�� ;�A ;�B�, i3�� ;�A ;�B� takes rela-
tively large values around 0.4 even in the Poisson limit,
which implies that we can get nearly 50% of the information
about � and �A just by looking at �B. This is because the
oscillators are synchronized even if they are driven by Pois-
son impulses, and we can learn much about �A by knowing
�B.

Though the interaction information itself is symmetric
with respect to its three arguments, we can obtain further
insight by taking into account the drive-response configura-
tion of our model, namely, the fact that the interimpulse in-
terval � has a distinct meaning from the other two phase
variables, �A and �B. Therefore, for the phase-locked situa-
tion with i1�� ;�A ;�B��1, we may consider that the phases
�A and �B are predominantly controlled by the driving im-
pulse �, as implied from the condition giving the maximum
value of I�� ;�A ;�B�. On the other hand, in the Poisson case
with i1�� ;�A ;�B� close to 0, we may conclude that � is nearly
independent of �A and �B. This indicates that the phases have
very little information about the driving impulse in the noise-
induced synchronized state.

The above results lead us to two distinct interpretations of
the two synchronization scenarios, as schematically summa-
rized in Fig. 14; in the phase locking, the two oscillators are
simply dominated by the impulses, whereas they are almost
free from the impulses but still behave synchronously in the
noise-induced synchronization.

VII. SUMMARY

In the present study, we analyzed uncoupled oscillators
driven by gamma impulses that smoothly interpolate be-
tween the periodic and the Poisson interimpulse intervals to
quantify the difference in synchronization dynamics between
these two limiting cases. By examining the dependence of
various quantities on the shape parameter of the gamma im-
pulses, we have revealed a clear difference between the two
types of synchronization. Using phase distributions, fre-
quency detuning, statistics of the Lyapunov exponents, and
information-theoretic measures, we have quantitatively con-
firmed our original intuition, namely, that the oscillators are
principally dominated by the impulses and mutually synchro-
nized as its consequence for the periodic driving, whereas the
oscillators are not entrained by the impulses �at least not
strongly influenced by the interimpulse interval just before
the phase is measured� but they still attain coherence in the
case of the Poisson driving.

Generalization of our results for uncoupled oscillators to
mutually interacting oscillators, in particular with delay, un-
der common or correlated gamma impulses is an interesting
future subject, where not only synchronization but qualita-
tively different behaviors �42� can be expected. More de-
tailed quantification of the input-output and the output-output
relations of the impulse-driven oscillators from the viewpoint
of information transfer would also be interesting, where the
effect of the functional shape of the phase response curve
and its optimization would be important issues. As we found
in the measurement of mutual and interaction information,
the transition between the phase locking and the noise-
induced synchronization may not be simply monotonic from
such a viewpoint, implying the importance of intermediate
randomness of the input impulses. We plan to push forward
in these directions in our future studies.
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APPENDIX: FOURIER REPRESENTATION OF THE
FROBENIUS-PERRON EQUATION

Here, we introduce the Fourier representation of the
Frobenius-Perron equations �Eqs. �10� and �12��. Based on
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dotted curve� plotted against the shape parameter a. �b� Normalized
interaction information. i1��A ;�B ;��= I��A ;�B ;�� /H��� �red dashed
curve�, i2��A ;�B ;��= I��A ;�B ;�� /J��A ;�B� �blue dotted-dashed
curve�, and i3��A ;�B ;��= I��A ;�B ;�� /J�� ;�A� �green dotted curve�.
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FIG. 14. Schematic diagrams showing mutual dependence
among the impulse interval and the oscillator phases inferred from
the interaction information. �a� Noise-induced synchronization. �b�
Phase locking.

HATA et al. PHYSICAL REVIEW E 82, 036206 �2010�

036206-10



this representation, we can use the fast Fourier transform
algorithm to numerically calculate convolution integrals in-
cluded in the equations and drastically reduce calculation
costs.

First, to numerically convolute Pn and S, we transform the
Dirac delta function in the Frobenius-Perron equation, in
such a way that it becomes an explicit function of the vari-
able of integration �� rather than the original phase variable
�. Here,

Pn+1��� = �
k=−�

� 

0

1

d��

0

�

d�

−�

�

d�W���Pn����R���


	�� − F��� + �� − �� − k� �A1�

= �
k=−�

� 

0

1

d��

0

�

d�

−�

�

d�W���Pn����R��� �A2�



dF−1�� − �� − k�

d�
	��� − F−1�� − �� − k� + �� , �A3�

where we have defined an inverse function of the phase map,

F�x� = F−1�x�mod 1. �A4�

Since F is a phase map,

F−1�� − �� − k� = F−1�� − ��� − k = F�� − ��� + d − k

�A5�

holds for F−1��−���� �d ,d+1�, where d is an integer. Using
this, we obtain

Pn+1��� = �
k=−�

� 

0

1

d��

0

�

d�W���Pn����



d�F�� − ��� + d − k�

d�
R�F�� − ��� + d − k − ���

�A6�

=

0

1

d��

0

�

d�W���Pn����
dF�� − ���

d�


 �
k=−�

�

R�F�� − ��� − k − ��� �A7�

=

0

1

d��

0

�

d�W���Pn����
dF�� − ���

d�


S�F�� − ��� − ��� , �A8�

where

S�F�� − ��� − ��� = �
k=−�

�

R�F�� − ��� − k − ��� . �A9�

Now, using the discrete Fourier transformation, we can con-
volute Pn and S as

Pn+1��� = 

0

�

d�W���
dF�� − ���

d�



0

1

d��


�
m

pn,me2�im���
l

sle
2�il�F��−���−���

�A10�

=

0

�

d�W���
dF�� − ���

d�


�
m

pn,msme2�imF��−��� �A11�

=�
m

pn,msm

0

�

d�W���Dm�� − ��� , �A12�

where pn,m and sm are mth Fourier coefficients of Pn and S,
respectively,

pn,m = 

0

1

d��Pn����e−2�m�� �A13�

sm = 

0

1

d��S����e−2�m��, �A14�

and

Dm�� − ��� =
dF�� − ���

d�
e2�imF��−���. �A15�

Next, we need to convolute the functions W�� ;a ,b� and
Dm��−���. From the definition of the gamma distribution
�Eq. �3��,

W��;a,b�d� = W���;a,�b�d���� �A16�

holds. Using this, we obtain

Pn+1��� = �
m

pn,msm

0

�

d����W���;a,�b�Dm�� − ���

�A17�

=�
m

pn,msm

0

�

d�����
l

Wle
2�il��


�
�

dm,�e2�i���−��� �A18�

=�
m,�

pn,msmdm,�W�e2�i��, �A19�

where w� and dm,� are �th Fourier coefficients of
W��� ;a ,�b� and Dm, respectively,

W� = 

0

�

dtW�t;a,�b�e−2�i�t �A20�

SYNCHRONIZATION OF UNCOUPLED OSCILLATORS BY… PHYSICAL REVIEW E 82, 036206 �2010�

036206-11



dm,� = 

0

1

d�Dm���e−2�i��. �A21�

Therefore, we can write the evolution of the Fourier coeffi-
cient of Pn��� as

pn+1,� = �
m

pn,msmdm,�W�, �A22�

which can easily be calculated numerically.

Similarly, we can write the evolution of pn,m,l, which is
the �m , l�th Fourier coefficient of the joint probability density
function Pn��A ,�B� as

pn+1,�,� = �
m,l

pn,m,lsmsldm,�dl,�W�+�, �A23�

which is also easy to calculate numerically.
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